
Jakarta Enterprise Beans, Core Features
Jakarta Enterprise Beans Team, https://projects.eclipse.org/projects/ee4j.ejb

4.0-SNAPSHOT, March 06, 2020

Table of Contents
Copyright. 1

Eclipse Foundation Specification License . 1

Disclaimers. 2

1. Introduction . 3

1.1. Target Audience . 3

1.2. What is New in This Release. 3

1.3. What was New in EJB 3.1 . 4

1.3.1. What was New in EJB 3.0. 5

1.4. Acknowledgements . 6

1.5. Organization of the Specification Documents . 7

1.6. Document Conventions . 7

2. Overview. 8

2.1. Overall Goals . 8

2.2. EJB Roles . 9

2.2.1. Enterprise Bean Provider . 9

2.2.2. Application Assembler . 9

2.2.3. Deployer . 10

2.2.4. EJB Server Provider . 11

2.2.5. EJB Container Provider . 11

2.2.6. System Administrator . 12

2.3. Enterprise Beans . 12

2.3.1. Characteristics of Enterprise Beans . 12

2.3.2. Flexible Model . 13

2.4. Enterprise Bean Object Types . 13

2.4.1. Session Objects. 13

2.4.2. Message-Driven Objects. 14

2.4.3. Entity Objects (Optional) . 14

2.5. Standard Mapping to CORBA Protocols . 15

2.6. Mapping to Web Service Protocols . 15

2.7. Pruning the EJB API . 15

2.8. Relationship to Managed Bean Specification. 16

2.9. Relationship to Contexts and Dependency Injection (CDI) Specification . 16

2.10. Relationship to the Java API for RESTful Web Services (JAX-RS) Specification 16

3. Client View of a Session Bean . 18

3.1. Overview. 18

3.2. Local, Remote, and Web Service Client Views . 19

3.2.1. Remote Clients . 20

3.2.2. Local Clients . 20

3.2.3. Choosing Between a Local or Remote Client View . 21

3.2.4. Web Service Clients . 23

3.3. EJB Container. 23

3.4. Client View of Session Beans Written to the EJB 3.x Simplified API. 24

3.4.1. Obtaining a Session Bean’s Business Interface . 24

3.4.2. Obtaining a Reference to the No-interface View . 24

3.4.3. Session Bean’s Business Interface. 25

3.4.4. Session Bean’s No-Interface View . 25

3.4.5. Client View of Session Object’s Life Cycle . 26

3.4.6. Example of Obtaining and Using a Session Object . 27

3.4.7. Session Object Identity. 28

3.4.7.1. Stateful Session Beans . 28

3.4.7.2. Stateless Session Beans . 28

3.4.7.3. Singleton Session Beans . 29

3.4.8. Asynchronous Invocations . 30

3.4.8.1. Return Values . 30

3.4.9. Concurrent Access to Session Bean References . 31

3.5. The Web Service Client View of a Stateless or Singleton Session Bean . 31

3.5.1. JAX-WS Web Service Clients . 32

3.6. Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View API 33

3.6.1. Locating a Session Bean’s Home Interface . 33

3.6.2. Session Bean’s Remote Home Interface. 34

3.6.2.1. Creating a Session Object. 35

3.6.2.2. Removing a Session Object . 36

3.6.3. Session Bean’s Local Home Interface. 36

3.6.3.1. Creating a Session Object. 37

3.6.3.2. Removing a Session Object . 37

3.6.4. EJBObject and EJBLocalObject . 38

3.6.5. Client view of Session Object’s Life Cycle . 38

3.6.5.1. References to Session Object Remote Component Interfaces . 39

3.6.5.2. References to Session Object Local Component Interfaces . 39

3.6.6. Creating and Using a Session Object. 40

3.6.7. Object Identity . 41

3.6.7.1. Stateful Session Beans . 42

3.6.7.2. Stateless Session Beans . 42

3.6.7.3. getPrimaryKey(). 43

3.6.8. Type Narrowing. 43

4. Session Bean Component Contract. 44

4.1. Overview. 44

4.2. Conversational State of a Stateful Session Bean . 45

4.2.1. Instance Passivation and Conversational State . 46

4.2.2. The Effect of Transaction Rollback on Conversational State . 48

4.3. Protocol Between a Session Bean Instance and its Container . 48

4.3.1. Required Session Bean Metadata . 48

4.3.2. Dependency Injection . 48

4.3.3. The SessionContext Interface . 49

4.3.3.1. Use of the MessageContext Interface by Session Beans . 50

4.3.4. Session Bean Lifecycle Callback Interceptor Methods . 50

4.3.5. The SessionBean Interface . 52

4.3.6. The Session Synchronization Notifications for Stateful Session Beans . 53

4.3.7. Timeout Callbacks for Stateless and Singleton Session Beans . 54

4.3.8. Business Method Delegation. 54

4.3.9. Session Bean Creation . 54

4.3.9.1. Stateful Session Beans . 55

4.3.9.2. Stateless Session Beans . 55

4.3.10. Stateful Session Bean Removal . 55

4.3.11. Stateful Session Bean Timeout. 56

4.3.12. Business Method Interceptor Methods for Session Beans . 56

4.3.13. Serializing Session Bean Methods. 56

4.3.13.1. Stateful Session Bean Concurrent Access Timeouts . 57

4.3.14. Transaction Context of Session Bean Methods . 57

4.4. Access in the Global JNDI Namespace . 58

4.4.1. Syntax . 58

4.4.1.1. java:app . 59

4.4.1.2. java:module . 59

4.4.2. Examples . 59

4.4.2.1. Session bean exposing a single local business interface . 60

4.4.2.2. Session bean exposing multiple client views . 61

4.5. Asynchronous Methods. 61

4.5.1. Metadata . 62

4.5.2. Method Requirements . 62

4.5.2.1. Return Values . 62

4.5.2.2. Method cancellation . 63

4.5.3. Transactions . 63

4.5.4. Security . 63

4.5.5. Client Exception Behavior. 63

4.6. Stateful Session Beans . 64

4.6.1. Stateful Session Bean Lifecycle State Diagram . 64

4.6.2. Operations Allowed in the Methods of a Stateful Session Bean Class . 67

4.6.3. Dealing with Exceptions . 71

4.6.4. Missed PreDestroy Calls . 71

4.6.5. Disabling Passivation of Stateful Session Beans . 72

4.6.6. Transaction Semantics of Initialization, Destruction, Activation and Passivation 72

4.6.7. Restrictions for Transactions . 73

4.7. Stateless Session Beans . 73

4.7.1. Stateless Session Bean Lifecycle State Diagram. 74

4.7.2. Operations Allowed in the Methods of a Stateless Session Bean Class . 75

4.7.3. Dealing with Exceptions . 80

4.8. Singleton Session Beans . 80

4.8.1. Singleton Session Bean Initialization . 81

4.8.2. Singleton Session Bean Destruction . 84

4.8.3. Transaction Semantics of Initialization and Destruction . 84

4.8.4. Singleton Session Bean Error Handling. 84

4.8.5. Singleton Session Bean Concurrency . 85

4.8.5.1. Container-Managed Concurrency . 86

4.8.5.2. Bean-Managed Concurrency. 87

4.8.5.3. Specification of a Concurrency Management Type. 87

4.8.5.4. Specification of the Container-Managed Concurrency Metadata for a Bean’s Methods . 87

4.8.5.5. Concurrent Access Timeouts. 89

4.8.6. Operations Allowed in the Methods of a Singleton Session Bean . 90

4.9. The Responsibilities of the Bean Provider . 95

4.9.1. Classes and Interfaces . 95

4.9.2. Session Bean Class. 95

4.9.2.1. Session Bean Superclasses. 96

4.9.3. Lifecycle Callback Interceptor Methods . 97

4.9.4. Session Synchronization Methods . 97

4.9.5. ejbCreate<METHOD> Methods. 98

4.9.6. Business Methods . 98

4.9.7. Session Bean’s Business Interface. 99

4.9.8. Session Bean’s No-Interface View . 101

4.9.9. Session Bean’s Remote Component Interface . 102

4.9.10. Session Bean’s Remote Home Interface . 102

4.9.11. Session Bean’s Local Component Interface . 103

4.9.12. Session Bean’s Local Home Interface . 104

4.9.13. Session Bean’s Web Service Endpoint Interface . 104

4.10. The Responsibilities of the Container Provider . 104

4.10.1. Generation of Implementation Classes . 105

4.10.2. Generation of WSDL. 105

4.10.3. Session Business Interface Implementation Class . 105

4.10.4. No-Interface View Reference Class. 106

4.10.5. Session EJBHome Class . 106

4.10.6. Session EJBObject Class . 106

4.10.7. Session EJBLocalHome Class . 106

4.10.8. Session EJBLocalObject Class . 107

4.10.9. Web Service Endpoint Implementation Class . 107

4.10.10. Asynchronous Client Future<V> Return Value Implementation Class 107

4.10.11. Handle Classes. 107

4.10.12. EJBMetaData Class . 107

4.10.13. Non-reentrant Instances . 107

4.10.14. Transaction Scoping, Security, Exceptions . 107

4.10.15. JAX-WS Message Handlers for Web Service Endpoints. 108

4.10.16. SessionContext . 108

5. Message-Driven Bean Component Contract . 109

5.1. Overview. 109

5.2. Goals . 109

5.3. Client View of a Message-Driven Bean . 110

5.4. Protocol Between a Message-Driven Bean Instance and its Container . 111

5.4.1. Required MessageDrivenBean Metadata . 111

5.4.2. The Required Message Listener Interface. 111

5.4.3. Message-Driven Bean with No-Methods Listener Interface . 112

5.4.4. Dependency Injection . 112

5.4.5. The MessageDrivenContext Interface . 113

5.4.6. Message-Driven Bean Lifecycle Callback Interceptor Methods. 113

5.4.7. The Optional MessageDrivenBean Interface . 114

5.4.8. Timeout Callbacks. 115

5.4.9. Message-Driven Bean Creation . 115

5.4.10. Message Listener Interceptor Methods for Message-Driven Beans . 115

5.4.11. Serializing Message-Driven Bean Methods . 115

5.4.12. Concurrency of Message Processing . 116

5.4.13. Transaction Context of Message-Driven Bean Methods . 116

5.4.14. Security Context of Message-Driven Bean Methods . 116

5.4.15. Association of a Message-Driven Bean with a Destination or Endpoint 117

5.4.16. Activation Configuration Properties . 117

5.4.17. JMS Message-Driven Beans. 117

5.4.17.1. Message Acknowledgment . 117

5.4.17.2. Message Selectors . 118

5.4.17.3. Destination Type . 119

5.4.17.4. Destination Lookup . 119

5.4.17.5. Connection Factory Lookup . 119

5.4.17.6. Subscription Durability . 119

5.4.17.7. Subscription Name . 120

5.4.17.8. Client Identifier . 120

5.4.18. Dealing with Exceptions . 120

5.4.19. Missed PreDestroy Callbacks . 121

5.4.20. Replying to a JMS Message . 121

5.5. Message-Driven Bean State Diagram . 121

5.5.1. Operations Allowed in the Methods of a Message-Driven Bean Class . 122

5.6. The Responsibilities of the Bean Provider . 125

5.6.1. Classes and Interfaces . 126

5.6.2. Message-Driven Bean Class . 126

5.6.3. Message-Driven Bean Superclasses . 126

5.6.4. Message Listener Method . 127

5.6.5. Message-Driven Bean with No-Methods Listener Interface . 127

5.6.6. Lifecycle Callback Interceptor Methods . 127

5.7. The Responsibilities of the Container Provider. 128

5.7.1. Generation of Implementation Classes . 128

5.7.2. Deployment of Message-Driven Beans with No-Methods Listener Interface. 128

5.7.3. Deployment of JMS Message-Driven Beans . 128

5.7.4. Request/Response Messaging Types . 128

5.7.5. Non-reentrant Instances . 128

5.7.6. Transaction Scoping, Security, Exceptions . 129

6. Persistence . 130

7. Interceptors . 131

7.1. Overview. 131

7.2. Interceptor Life Cycle . 131

7.3. Business Method Interceptors . 131

7.4. Timer Timeout Method Interceptors . 132

7.5. Interceptors for LifeCycle Event Callbacks . 132

7.6. InvocationContext . 133

7.7. Exception Handling . 133

7.8. Specification of Interceptors in the Deployment Descriptor . 133

7.8.1. Specification of Interceptors . 134

7.8.2. Binding of Interceptors to Target Classes . 134

7.8.2.1. Examples . 137

8. Support for Transactions . 143

8.1. Overview. 143

8.1.1. Transactions . 143

8.1.2. Transaction Model . 144

8.1.3. Relationship to JTA and JTS . 144

8.2. Sample Scenarios . 145

8.2.1. Update of Multiple Databases . 145

8.2.2. Messages Sent or Received Over JMS Sessions and Update of Multiple Databases 145

8.2.3. Update of Databases via Multiple EJB Servers . 147

8.2.4. Client-Managed Demarcation . 147

8.2.5. Container-Managed Demarcation. 148

8.3. Bean Provider’s Responsibilities. 149

8.3.1. Bean-Managed Versus Container-Managed Transaction Demarcation 149

8.3.1.1. Non-Transactional Execution. 150

8.3.2. Isolation Levels . 150

8.3.3. Enterprise Beans Using Bean-Managed Transaction Demarcation . 151

8.3.3.1. getRollbackOnly and setRollbackOnly Methods . 164

8.3.4. Enterprise Beans Using Container-Managed Transaction Demarcation. 164

8.3.4.1. javax.ejb.SessionSynchronization Interface. 167

8.3.4.2. javax.ejb.EJBContext.setRollbackOnly Method . 167

8.3.4.3. javax.ejb.EJBContext.getRollbackOnly method . 167

8.3.5. Use of JMS APIs in Transactions . 167

8.3.6. Specification of a Bean’s Transaction Management Type. 168

8.3.7. Specification of the Transaction Attributes for a Bean’s Methods . 168

8.3.7.1. Specification of Transaction Attributes with Metadata Annotations 171

8.3.7.2. Specification of Transaction Attributes in the Deployment Descriptor 173

8.4. Application Assembler’s Responsibilities . 178

8.5. Deployer’s Responsibilities. 178

8.6. Container Provider Responsibilities . 179

8.6.1. Bean-Managed Transaction Demarcation . 179

8.6.2. Container-Managed Transaction Demarcation for Session Beans . 182

8.6.2.1. Session Synchronization Callbacks . 182

8.6.3. Container-Managed Transaction Demarcation for Business Methods 183

8.6.3.1. NOT_SUPPORTED . 183

8.6.3.2. REQUIRED . 183

8.6.3.3. SUPPORTS . 184

8.6.3.4. REQUIRES_NEW. 184

8.6.3.5. MANDATORY . 184

8.6.3.6. NEVER . 185

8.6.3.7. Transaction Attribute Summary . 185

8.6.3.8. Handling of setRollbackOnly Method. 187

8.6.3.9. Handling of getRollbackOnly Method . 188

8.6.3.10. Handling of getUserTransaction Method . 188

8.6.3.11. Timing of Return Value Marshalling with Regard to Transaction Boundaries 188

8.6.4. Container-Managed Transaction Demarcation for Message-Driven Beans 188

8.6.5. Container-Managed Transaction Demarcation for Message Listener Methods 188

8.6.5.1. NOT_SUPPORTED . 188

8.6.5.2. REQUIRED . 189

8.6.5.3. Handling of setRollbackOnly Method. 189

8.6.5.4. Handling of getRollbackOnly Method . 189

8.6.5.5. Handling of getUserTransaction Method . 190

8.6.6. Local Transaction Optimization . 190

8.6.7. Handling of Methods that Run with “an unspecified transaction context” 190

8.7. Access from Multiple Clients in the Same Transaction Context . 191

8.7.1. Transaction “Diamond” Scenario with an Entity Object . 191

8.7.2. Container Provider’s Responsibilities . 192

8.7.3. Bean Provider’s Responsibilities . 193

8.7.4. Application Assembler and Deployer’s Responsibilities . 193

8.7.5. Transaction Diamonds involving Session Objects . 193

9. Exception Handling . 195

9.1. Overview and Concepts. 195

9.1.1. Application Exceptions . 195

9.1.2. Goals for Exception Handling . 195

9.2. Bean Provider’s Responsibilities. 196

9.2.1. Application Exceptions . 196

9.2.2. System Exceptions . 198

9.3. Container Provider Responsibilities . 199

9.3.1. Exceptions from a Session Bean’s Business Interface Methods and No-Interface View

Methods

 199

9.3.2. Exceptions from Method Invoked via Session Bean’s 2.1 Client View or through Web 202

Service Client View

9.3.3. Exceptions from AroundConstruct, PostConstruct and PreDestroy Lifecycle Callbacks 206

9.3.4. Exceptions from Message-Driven Bean Message Listener Methods. 206

9.3.5. Exceptions from an Enterprise Bean’s Timeout Callback Method . 208

9.3.6. Exceptions from Other Container-invoked Callbacks . 209

9.3.7. Non-existing Stateful Session Object . 210

9.3.8. Exceptions from the Management of Container-Managed Transactions 210

9.3.9. Release of Resources . 211

9.3.10. Support for Deprecated Use of java.rmi.RemoteException . 211

9.4. Client’s View of Exceptions. 212

9.4.1. Application Exception . 212

9.4.1.1. Local and Remote Clients . 212

9.4.1.2. Web Service Clients . 213

9.4.2. java.rmi.RemoteException and javax.ejb.EJBException . 213

9.4.2.1. javax.ejb.EJBTransactionRolledbackException,

javax.ejb.TransactionRolledbackLocalException, and

javax.transaction.TransactionRolledbackException

 214

9.4.2.2. javax.ejb.EJBTransactionRequiredException,

javax.ejb.TransactionRequiredLocalException, and

javax.transaction.TransactionRequiredException

 214

9.4.2.3. javax.ejb.NoSuchEJBException, javax.ejb.NoSuchObjectLocalException, and

java.rmi.NoSuchObjectException

 214

9.5. System Administrator’s Responsibilities. 215

10. Support for Distributed Interoperability . 216

10.1. Support for Distribution . 216

10.1.1. Client-Side Objects in a Distributed Environment . 216

10.2. Interoperability Overview . 217

10.2.1. Interoperability Goals . 218

10.3. Interoperability Scenarios . 218

10.3.1. Interactions Between Web Containers and EJB Containers for E-Commerce Applications 219

10.3.2. Interactions Between Application Client Containers and EJB Containers Within an

Enterprise’s Intranet

 220

10.3.3. Interactions Between Two EJB Containers in an Enterprise’s Intranet. 221

10.3.4. Intranet Application Interactions Between Web Containers and EJB Containers 222

10.4. Overview of Interoperability Requirements . 223

10.5. Remote Invocation Interoperability . 224

10.5.1. Mapping Java Remote Interfaces to IDL . 225

10.5.2. Mapping Value Objects to IDL . 225

10.5.3. Mapping of System Exceptions . 225

10.5.4. Obtaining Stub and Client View Classes . 226

10.5.5. System Value Classes . 226

10.5.5.1. HandleDelegate SPI. 227

10.6. Transaction Interoperability . 227

10.6.1. Transaction Interoperability Requirements . 228

10.6.1.1. Transaction Context Wire Format . 228

10.6.1.2. Two-Phase Commit Protocol. 229

10.6.1.3. Transactional Policies of Enterprise Bean References. 230

10.6.1.4. Exception Handling Behavior . 230

10.6.2. Interoperating with Containers that do not Implement Transaction Interoperability 231

10.6.2.1. Client Container Requirements . 231

10.6.2.2. EJB container requirements . 232

10.7. Requirements for EJB Containers not Supporting Transaction Interoperability 233

10.8. Naming Interoperability. 233

10.9. Security Interoperability . 235

10.9.1. Introduction . 235

10.9.1.1. Trust Relationships Between Containers, Principal Propagation 236

10.9.1.2. Application Client Authentication. 237

10.9.2. Securing EJB Invocations . 237

10.9.2.1. Secure Transport Protocol . 237

10.9.2.2. Security Information in IORs . 238

10.9.2.3. Propagating Principals and Authentication Data in IIOP Messages 239

10.9.2.4. Security Configuration for Containers . 241

10.9.2.5. Runtime Behavior . 242

11. Enterprise Bean Environment . 243

11.1. Overview . 243

11.2. Enterprise Bean’s Environment as a JNDI Naming Context. 244

11.2.1. Sharing of Environment Entries . 245

11.2.2. Annotations for Environment Entries . 246

11.2.3. Annotations and Deployment Descriptors . 247

11.3. Responsibilities by EJB Role . 248

11.3.1. Bean Provider’s Responsibilities. 248

11.3.2. Application Assembler’s Responsibility . 248

11.3.3. Deployer’s Responsibility . 248

11.3.4. Container Provider Responsibility . 249

11.4. Simple Environment Entries . 249

11.4.1. Bean Provider’s Responsibilities. 249

11.4.1.1. Injection of Simple Environment Entries Using Annotations . 249

11.4.1.2. Programming Interfaces for Accessing Simple Environment Entries 250

11.4.1.3. Declaration of Simple Environment Entries in the Deployment Descriptor 251

11.4.2. Application Assembler’s Responsibility . 256

11.4.3. Deployer’s Responsibility . 257

11.4.4. Container Provider Responsibility . 257

11.5. EJB References. 257

11.5.1. Bean Provider’s Responsibilities. 258

11.5.1.1. Injection of EJB References. 258

11.5.1.2. EJB Reference Programming Interfaces . 260

11.5.1.3. Declaration of EJB References in Deployment Descriptor . 261

11.5.2. Application Assembler’s Responsibilities . 263

11.5.2.1. Overriding Rules . 266

11.5.3. Deployer’s Responsibility . 267

11.5.4. Container Provider’s Responsibility. 268

11.6. Web Service References . 268

11.7. Resource Manager Connection Factory References. 268

11.7.1. Bean Provider’s Responsibilities. 269

11.7.1.1. Injection of Resource Manager Connection Factory References . 269

11.7.1.2. Programming Interfaces for Resource Manager Connection Factory References 269

11.7.1.3. Declaration of Resource Manager Connection Factory References in Deployment

Descriptor

 272

11.7.1.4. Standard Resource Manager Connection Factory Types . 274

11.7.2. Deployer’s Responsibility . 274

11.7.3. Container Provider Responsibility . 275

11.7.4. System Administrator’s Responsibility . 276

11.8. Resource Environment References . 276

11.8.1. Bean Provider’s Responsibilities. 276

11.8.1.1. Injection of Resource Environment References . 276

11.8.1.2. Resource Environment Reference Programming Interfaces . 277

11.8.1.3. Declaration of Resource Environment References in Deployment Descriptor 277

11.8.2. Deployer’s Responsibility . 277

11.8.3. Container Provider’s Responsibility. 278

11.9. Message Destination References. 278

11.9.1. Bean Provider’s Responsibilities. 278

11.9.1.1. Injection of Message Destination References. 278

11.9.1.2. Message Destination Reference Programming Interfaces . 279

11.9.1.3. Declaration of Message Destination References in Deployment Descriptor 280

11.9.2. Application Assembler’s Responsibilities . 281

11.9.3. Deployer’s Responsibility . 284

11.9.4. Container Provider’s Responsibility. 284

11.10. Persistence Unit References. 285

11.10.1. Bean Provider’s Responsibilities. 285

11.10.1.1. Injection of Persistence Unit References. 285

11.10.1.2. Programming Interfaces for Persistence Unit References . 285

11.10.1.3. Declaration of Persistence Unit References in Deployment Descriptor 287

11.10.2. Application Assembler’s Responsibilities . 288

11.10.2.1. Overriding Rules . 289

11.10.3. Deployer’s Responsibility . 290

11.10.4. Container Provider Responsibility . 290

11.10.5. System Administrator’s Responsibility . 290

11.11. Persistence Context References . 290

11.11.1. Bean Provider’s Responsibilities. 291

11.11.1.1. Injection of Persistence Context References. 291

11.11.1.2. Programming Interfaces for Persistence Context References . 291

11.11.1.3. Declaration of Persistence Context References in Deployment Descriptor 292

11.11.2. Application Assembler’s Responsibilities . 294

11.11.2.1. Overriding Rules . 295

11.11.3. Deployer’s Responsibility . 296

11.11.4. Container Provider Responsibility . 296

11.11.5. System Administrator’s Responsibility . 296

11.12. UserTransaction Interface . 297

11.12.1. Bean Provider’s Responsibility . 298

11.12.2. Container Provider’s Responsibility. 298

11.13. ORB References. 299

11.13.1. Bean Provider’s Responsibility . 300

11.13.2. Container Provider’s Responsibility. 300

11.14. TimerService References . 300

11.14.1. Bean Provider’s Responsibility . 300

11.14.2. Container Provider’s Responsibility. 300

11.15. EJBContext References . 300

11.15.1. Bean Provider’s Responsibility . 301

11.15.2. Container Provider’s Responsibility. 301

11.16. Support for Other Resources and Configuration Parameters . 301

11.17. Deprecated EJBContext.getEnvironment Method . 301

12. Security Management . 303

12.1. Overview . 303

12.2. Bean Provider’s Responsibilities. 305

12.2.1. Invocation of Other Enterprise Beans . 305

12.2.2. Resource Access . 305

12.2.3. Access of Underlying OS Resources . 305

12.2.4. Programming Style Recommendations . 305

12.2.5. Programmatic Access to Caller’s Security Context . 306

12.2.5.1. Use of getCallerPrincipal . 308

12.2.5.2. Use of isCallerInRole. 310

12.2.5.3. Declaration of Security Roles Referenced from the Bean’s Code 311

12.3. Responsibilities of the Bean Provider and/or Application Assembler. 315

12.3.1. Security Roles. 315

12.3.2. Method Permissions. 319

12.3.2.1. Specification of Method Permissions with Metadata Annotations 319

12.3.2.2. Specification of Method Permissions in the Deployment Descriptor 321

12.3.2.3. Unspecified Method Permissions . 327

12.3.3. Linking Security Role References to Security Roles . 327

12.3.4. Specification of Security Identities in the Deployment Descriptor. 329

12.3.4.1. Run-as . 330

12.4. Deployer’s Responsibilities . 332

12.4.1. Security Domain and Principal Realm Assignment . 332

12.4.2. Assignment of Security Roles. 332

12.4.3. Principal Delegation. 333

12.4.4. Security Management of Resource Access . 333

12.4.5. General Notes on Deployment Descriptor Processing . 334

12.5. EJB Client Responsibilities . 334

12.6. EJB Container Provider’s Responsibilities . 334

12.6.1. Deployment Tools . 334

12.6.2. Security Domain(s) . 335

12.6.3. Security Mechanisms . 335

12.6.4. Passing Principals on EJB Calls . 335

12.6.5. Security Methods in javax.ejb.EJBContext . 336

12.6.6. Secure Access to Resource Managers. 336

12.6.7. Principal Mapping . 336

12.6.8. System Principal . 336

12.6.9. Runtime Security Enforcement . 337

12.6.10. Audit Trail . 338

12.7. System Administrator’s Responsibilities . 338

12.7.1. Security Domain Administration . 338

12.7.2. Principal Mapping . 338

12.7.3. Audit Trail Review . 338

13. Timer Service . 339

13.1. Overview . 339

13.2. Bean Provider’s View of the Timer Service . 339

13.2.1. Calendar-Based Time Expressions . 340

13.2.1.1. Calendar-Based Time Expression Attributes . 341

13.2.1.2. Attribute Syntax . 342

13.2.1.3. Expression Rules . 345

13.2.1.4. Examples . 346

13.2.2. Automatic Timer Creation . 347

13.2.3. Non-persistent Timers . 349

13.2.4. The TimerService Interface . 350

13.2.4.1. Example. 352

13.2.5. Timeout Callback Methods . 353

13.2.5.1. Timeout Callbacks for Programmatic Timers . 353

13.2.5.2. Timeout Callbacks for Automatically Created Timers . 353

13.2.5.3. Timeout Callback Method Requirements . 353

13.2.6. The Timer and TimerHandle Interfaces . 355

13.2.7. Timer Identity . 356

13.2.8. Transactions. 356

13.3. Bean Provider’s Responsibilities. 356

13.3.1. Enterprise Bean Class . 356

13.3.2. TimerHandle . 357

13.4. Container’s Responsibilities. 357

13.4.1. TimerService, Timer, and TimerHandle Interfaces . 357

13.4.2. Automatic Timers . 357

13.4.3. Timer Expiration and Timeout Callback Method . 357

13.4.4. Timer Cancellation . 358

14. Deployment Descriptor. 359

14.1. Overview . 359

14.2. Bean Provider’s Responsibilities. 360

14.3. Application Assembler’s Responsibility . 364

14.4. Container Provider’s Responsibilities . 367

14.5. Deployment Descriptor XML Schema . 367

15. Packaging . 576

15.1. Overview . 576

15.2. Deployment Descriptor . 576

15.3. Packaging Requirements . 577

15.4. Enterprise Beans Packaged in a .war file . 577

15.4.1. Class Loading . 578

15.4.2. Component Environment . 578

15.4.3. Visibility of the Local Client View . 579

15.4.4. Ejb-names . 579

15.4.5. Example . 579

15.5. Deployment Descriptor and Annotation Processing . 579

15.5.1. Ejb-jar Deployment Descriptor and Annotation Processing. 580

15.5.2. .war Deployment Descriptor and Annotation Processing. 580

15.6. The Client View and the ejb-client JAR File . 581

15.7. Requirements for Clients . 582

15.8. Example . 582

16. Runtime Environment . 584

16.1. EJB Lite and Other EJB API Groups . 584

16.1.1. Support for Other EJB API Groups in an EJB Lite Container . 587

16.1.2. Integration with Other Technologies . 588

16.2. Bean Provider’s Responsibilities. 588

16.2.1. APIs Provided by Container . 588

16.2.2. Programming Restrictions . 588

16.3. Container Provider’s Responsibility . 591

16.3.1. EJB Interfaces and Annotations Requirements . 593

16.3.2. JNDI Requirements. 593

16.3.3. JTA API Requirements . 594

16.3.4. JDBC™ API Requirements . 594

16.3.5. JMS API Requirements. 594

16.3.6. Argument Passing Semantics. 596

16.3.7. Other Requirements. 597

17. Compatibility and Migration . 598

17.1. Support for Existing Applications. 598

17.2. Default Stateful Session Bean Concurrency Behavior . 598

17.3. Default Application Exception Subclassing Behavior . 598

17.4. Interoperability of EJB 3.2 and Earlier Components . 598

17.4.1. Clients written to the EJB 2.x APIs . 599

17.4.2. Clients written to the EJB 3.x API . 599

17.4.3. Combined use of EJB 2.x and EJB 3.x persistence APIs . 599

17.5. Adapting EJB 3.x Session Beans to Earlier Client Views . 599

17.5.1. Stateless Session Beans . 600

17.5.2. Stateful Session Beans . 600

18. Embeddable Usage. 602

18.1. Overview . 602

18.2. Bootstrapping API . 602

18.2.1. EJBContainer . 602

18.2.2. Standard Initialization Properties . 604

18.2.2.1. javax.ejb.embeddable.provider. 604

18.2.2.2. javax.ejb.embeddable.modules . 604

18.2.2.3. javax.ejb.embeddable.appName . 604

18.2.3. Looking Up Session Bean References. 604

18.2.4. Embeddable Container Shutdown . 605

18.3. Embeddable Container Provider’s Responsibilities . 605

18.3.1. Runtime Environment. 605

18.3.2. Naming Lookups . 606

18.3.3. Embeddable Container Bootstrapping . 606

18.3.4. Concrete javax.ejb.embeddable.EJBContainer Implementation Class. 607

19. Responsibilities of EJB Roles . 608

19.1. Bean Provider’s Responsibilities. 608

19.1.1. API Requirements . 608

19.1.2. Packaging Requirements. 608

19.2. Application Assembler’s Responsibilities . 608

19.3. EJB Container Provider’s Responsibilities . 608

19.4. Deployer’s Responsibilities . 608

19.5. System Administrator’s Responsibilities . 609

19.6. Client Programmer’s Responsibilities . 609

20. Related Documents . 610

Appendix A: Revision History . 612

A.1. Early Draft 1 . 612

A.2. Early Draft 2 . 615

A.3. Public Review Draft 1 & 2. 619

A.4. Public Review Draft 3 . 621

A.5. Public Review Draft 4 . 623

A.6. Public Draft . 625

A.7. Proposed Final Draft . 625

A.8. Final Release Candidate . 627

A.9. Final Release . 627

Specification: Jakarta Enterprise Beans, Core Features

Version: 4.0-SNAPSHOT

Status: DRAFT

Release: March 06, 2020

Copyright
Copyright (c) 2019 Eclipse Foundation.

Eclipse Foundation Specification License
By using and/or copying this document, or the Eclipse Foundation document from which this statement
is linked, you (the licensee) agree that you have read, understood, and will comply with the following
terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document
from which this statement is linked, in any medium for any purpose and without fee or royalty is
hereby granted, provided that you include the following on ALL copies of the document, or portions
thereof, that you use:

• link or URL to the original Eclipse Foundation document.

• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual
representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse Foundation,
Inc. [url to this license]"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be
provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to
this license, except anyone may prepare and distribute derivative works and portions of this document
in software that implements the specification, in supporting materials accompanying such software,
and in documentation of such software, PROVIDED that all such works include the notice below.
HOWEVER, the publication of derivative works of this document for use as a technical specification is
expressly prohibited.

The notice is:

"Copyright (c) 2018 Eclipse Foundation. This software or document includes material copied from or
derived from [title and URI of the Eclipse Foundation specification document]."

Copyright

DRAFT Jakarta Enterprise Beans, Core Features 1

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY
PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

Eclipse Foundation Specification License

2 Jakarta Enterprise Beans, Core Features DRAFT

Chapter 1. Introduction
This is the specification of the Enterprise JavaBeans TM architecture. The Enterprise JavaBeans
architecture is a architecture for the development and deployment of component-based business
applications. Applications written using the Enterprise JavaBeans architecture are scalable,
transactional, and multi-user secure. These applications may be written once, and then deployed on
any server platform that supports the Enterprise JavaBeans specification.

1.1. Target Audience
The target audiences for this specification are the vendors of transaction processing platforms,
vendors of enterprise application tools, and other vendors who want to support the Enterprise
JavaBeans (EJB) technology in their products.

Many concepts described in this document are system-level issues that are transparent to the
Enterprise JavaBeans application programmer.

1.2. What is New in This Release
The Enterprise JavaBeans 3.2 architecture extends Enterprise JavaBeans to include the following new
functionality and simplifications to the earlier EJB APIs:

Made support for the following features optional in this release and moved their description to a
separate EJB Optional Features See EJB 3.2 Optional document:

 _EJB 2.1 and earlier Entity Bean Component
Contract for Container-Managed Persistence_

 _EJB 2.1 and earlier Entity Bean Component
Contract for Bean-Managed Persistence_

 _Client View of an EJB 2.1 and earlier
Entity Bean_

 _EJB QL: Query Language for
Container-Managed Persistence Query Methods_

JAX-RPC Based Web Service Endpoints

1.1. Target Audience

DRAFT Jakarta Enterprise Beans, Core Features 3

Ejb.html#a9890

JAX-RPC Web Service Client View

Enhanced message-driven beans contract with a no-methods message listener interface to expose all
public methods as message listener methods.

Defined the EJB API Groups with clear rules for an EJB Lite Container to support other API groups.

Added container provided security role named “**” to indicate any authenticated caller independent of
the actual role name.

Extended the EJB Lite Group to include local asynchronous session bean invocations and non-
persistent EJB Timer Service.

Added an option for the lifecycle callback interceptor methods of stateful session beans to be executed
in a transaction context determined by the lifecycle callback method’s transaction attribute.

Introduced an option to disable passivation of stateful session beans.

Enhanced the TimerService API to access all active timers in the EJB module.

Enhanced the embeddable EJBContainer to implement AutoClosable interface.

Removed restrictions on javax.ejb.Timer and javax.ejb.TimerHandle that required references to be
used only inside a bean.

Relaxed default rules for a session bean to designate its implemented interfaces as local or as remote
business interfaces.

Enhanced the list of standard JMS MDB activation properties.

Simplified requirements for definition of a security role using the ejb deployment descriptor.

Removed restriction on obtaining the current class loader; replaced ‘must not’ with ‘should exercise
caution’ when using the Java I/O package.

1.3. What was New in EJB 3.1
The Enterprise JavaBeans 3.1 See Enterprise JavaBeans™ architecture extended Enterprise JavaBeans
to include the following new functionality and simplifications to the earlier EJB APIs:

 _A simplified local view that provides
session bean access without a separate local business interface._

Packaging and deployment of EJB components directly in a .war file without an ejb-jar file.

1.3. What was New in EJB 3.1

4 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9891

An embeddable API for executing EJB components within a Java SE environment.

 _A singleton session bean component that
provides easy access to shared state as well as application startup and
shutdown callbacks._

Automatically created EJB Timers.

Calendar-based EJB Timer expressions.

Asynchronous session bean invocations.

The definition of a lightweight subset of Enterprise JavaBeans functionality that is provided within the
Java EE Web Profile.

A portable global JNDI name syntax for looking up EJB components.

1.3.1. What was New in EJB 3.0

The Enterprise JavaBeans 3.0 architecture extended Enterprise JavaBeans to include the following new
functionality and simplifications to the earlier EJB APIs:

 _Definition of the Java language metadata
annotations that can be used to annotate EJB applications. These
metadata annotations are targeted at simplifying the developer’s task,
at reducing the number of program classes and interfaces the developer
is required to implement, and at eliminating the need for the developer
to provide an EJB deployment descriptor._

 _Specification of programmatic defaults,
including for metadata, to reduce the need for the developer to specify
common, expected behaviors and requirements on the EJB container. A
“configuration by exception” approach is taken whenever possible._

 _Encapsulation of environmental dependencies
and JNDI access through the use of annotations, dependency injection
mechanisms, and simple lookup mechanisms._

 _Simplification of the enterprise bean
types._

1.3. What was New in EJB 3.1

DRAFT Jakarta Enterprise Beans, Core Features 5

Elimination of the requirement for EJB component interfaces for session beans. The required business
interface for a session bean can be a plain Java interface rather than an EJBObject, EJBLocalObject, or
java.rmi.Remote interface.

 _Elimination of the requirement for home
interfaces for session beans._

 _Simplification of entity persistence
through the Java Persistence API_ link:Ejb.html#a9851[See Java™
Persistence API, version 2.1. http://jcp.org/en/jsr/detail?id=338.] _._
Support for light-weight domain modeling, including inheritance and
polymorphism.

Specification of Java language metadata annotations and XML deployment descriptor elements for the
object/relational mapping of persistent entities See Java™ Persistence API.

 _A query language for Java Persistence that
is an extension to EJB QL, with addition of projection, explicit inner
and outer join operations, bulk update and delete, subqueries, and
group-by. Addition of a dynamic query capability and support for native
SQL queries._

 _An interceptor facility for session beans
and message-driven beans._

 _Reduction of the requirements for usage of
checked exceptions._

 _Elimination of the requirement for the
implementation of callback interfaces._

1.4. Acknowledgements
The EJB 3.2 specification work is being conducted as part of JSR-345 under the Java Community Process
Program. This specification is the result of the collaborative work of the members of the EJB 3.2 Expert
Group: Caucho Technology, Inc: Reza Rahman; IBM: Jeremy Bauer; Oracle: Marina Vatkina, Linda
DeMichiel; OW2: Florent Benoit; Pramati Technologies: Ravikiran Noothi; RedHat: Pete Muir, Carlo de
Wolf; TmaxSoft, Inc.: Miju Byon; individual members: Adam Bien; David Blevins; Antonio Goncalves;
Stefan Heldt; Richard Hightower, Jean-Louis Monteiro.

1.4. Acknowledgements

6 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9851

1.5. Organization of the Specification Documents
This specification is organized into the following documents:

EJB Core Contracts and Requirements

EJB Optional Features

This EJB Core Contracts document defines the contracts and requirements for the use and
implementation of Enterprise JavaBeans. These contracts include those for the EJB 3.2 API, as well as
for the earlier EJB API that is required to be supported in this release. See Chapter See Runtime
Environment for coverage of the Enterprise JavaBeans API requirements.

The EJB Optional Features document See EJB 3.2 Optional Features defines the contracts and
requirements for the use and implementation of features support for which has been made optional as
of Enterprise JavaBeans, 3.2. These contracts are separated from the core contracts requirements of the
EJB 3.1 specification.

1.6. Document Conventions
The regular Times font is used for information that is prescriptive by the EJB specification.

The italic Times font is used for paragraphs that contain descriptive information, such as notes
describing typical use, or notes clarifying the text with prescriptive specification.

The Courier font is used for code examples.

1.5. Organization of the Specification Documents

DRAFT Jakarta Enterprise Beans, Core Features 7

Ejb.html#a9423
Ejb.html#a9423
Ejb.html#a9890

Chapter 2. Overview

2.1. Overall Goals
The Enterprise JavaBeans (EJB) architecture has the following goals:

The Enterprise JavaBeans architecture will be the standard component architecture for building
object-oriented business applications in the Java™ programming language.

The Enterprise JavaBeans architecture will support the development, deployment, and use of
distributed business applications in the Java™ programming language.

The Enterprise JavaBeans architecture will support the development, deployment, and use of web
services.

The Enterprise JavaBeans architecture will make it easy to write applications: application developers
will not have to understand low-level transaction and state management details, multi-threading,
connection pooling, or other complex low-level APIs.

Enterprise JavaBeans applications will follow the Write Once, Run Anywhere™ philosophy of the Java
programming language. An enterprise bean can be developed once, and then deployed on multiple
platforms without recompilation or source code modification.

The Enterprise JavaBeans architecture will address the development, deployment, and runtime aspects
of an enterprise application’s life cycle.

The Enterprise JavaBeans architecture will define the contracts that enable tools from multiple
vendors to develop and deploy components that can interoperate at runtime.

The Enterprise JavaBeans architecture will make it possible to build applications by combining
components developed using tools from different vendors.

The Enterprise JavaBeans architecture will provide interoperability between enterprise beans and
Java Platform, Enterprise Edition (Java EE) components as well as non-Java programming language
applications.

The Enterprise JavaBeans architecture will be compatible with existing server platforms. Vendors will
be able to extend their existing products to support Enterprise JavaBeans.

The Enterprise JavaBeans architecture will be compatible with other Java programming language APIs.

The Enterprise JavaBeans architecture will be compatible with the CORBA protocols.

The purpose of the EJB 3.2 release is both to continue to achieve these goals and to improve the EJB
architecture by reducing its complexity from the enterprise application developer’s point of view.

2.1. Overall Goals

8 Jakarta Enterprise Beans, Core Features DRAFT

2.2. EJB Roles
The Enterprise JavaBeans architecture defines six distinct roles in the application development and
deployment life cycle. Each EJB role may be performed by a different party. The EJB architecture
specifies the contracts that ensure that the product of each EJB role is compatible with the product of
the other EJB roles. The EJB specification focuses on those contracts that are required to support the
development and deployment of enterprise beans.

In some scenarios, a single party may perform several EJB Roles. For example, the Container Provider
and the EJB Server Provider may be the same vendor. Or a single programmer may perform the two
EJB Roles of the Enterprise Bean Provider and the Application Assembler.

The following sections define the six EJB roles1.

2.2.1. Enterprise Bean Provider

The Enterprise Bean Provider (Bean Provider for short) is the producer of enterprise beans. His or her
output is a set of one or more enterprise beans. These beans may be contained in a ejb-jar

or may be contained directly in a .war file. The Bean Provider is responsible for the Java classes that
implement the enterprise beans’ business methods; the definition of the beans’ client view interfaces,
if any; and the declarative specification of the beans’ metadata. The beans’ metadata may take the form
of metadata annotations applied to the bean classes and/or an external XML deployment descriptor.
The beans’ metadata—whether expressed in metadata annotations or in the deployment
descriptor—includes the structural information of the enterprise beans and declares all the enterprise
beans’ external dependencies (e.g. the names and types of resources that the enterprise beans use).

The Enterprise Bean Provider is typically an application domain expert. The Bean Provider develops
reusable enterprise beans that typically implement business tasks or business entities.

The Bean Provider is not required to be an expert at system-level programming. Therefore, the Bean
Provider usually does not program transactions, concurrency, security, distribution, or other services
into the enterprise beans. The Bean Provider relies on the EJB container for these services.

A Bean Provider of multiple enterprise beans often performs the EJB role of the Application Assembler.

2.2.2. Application Assembler

The Application Assembler combines enterprise beans into larger deployable application units. The
input to the Application Assembler is a set of enterprise beans, their interfaces, and metadata, as
produced by the Bean Provider(s). The Bean Provider’s output may also simply be un-assembled
enterprise beans that must be packaged in an ejb-jar file or .war file. The Application Assembler may
insert the application assembly instructions into the deployment descriptors. The Application
Assembler will create one or more ejb-jar and/or .war files from the input artifacts together with their
application assembly instructions as needed.

2.2. EJB Roles

DRAFT Jakarta Enterprise Beans, Core Features 9

#a10218

All of the input could be combined into a single output ejb-jar file or .war file. Similarly, the input could
also be split into multiple output ejb-jar and/or .war files. For example, the Application Assembler
could combine ejb1.jar and ejb2.jar into ejb3.jar, combine ejb1.jar and web1.war into web2.war, split
ejb1.jar into ejb2.jar and ejb3.jar, split web1.war into ejb1.jar and web2.jar, and so forth. Each output
ejb-jar file or .war file is either a deployment unit intended for the Deployer or a partially assembled
application that is intended for another Application Assembler.

The Application Assembler can also combine enterprise beans with other types of application
components when composing an application.

The EJB specification describes the case in which the application assembly step occurs before the
deployment of the enterprise beans. However, the EJB architecture does not preclude the case that
application assembly is performed after the deployment of all or some of the enterprise beans.

The Application Assembler is a domain expert who composes applications that use enterprise beans.
The Application Assembler works with the enterprise beans’ metadata annotations and/or deployment
descriptor and the enterprise beans’ client-view contract. Although the Assembler must be familiar
with the functionality provided by the enterprise beans’ client-view, he or she does not need to have
any knowledge of the enterprise beans’ implementation.

2.2.3. Deployer

The Deployer takes one or more ejb-jar files and/or .war file produced by a Bean Provider or
Application Assembler and deploys the enterprise beans contained in the ejb-jar files or .war files in a
specific operational environment. The operational environment includes an EJB container and server.

The Deployer must resolve all the external dependencies declared by the Bean Provider (e.g. the
Deployer must ensure that all resource manager connection factories used by the enterprise beans are
present in the operational environment, and he or she must bind them to the resource manager
connection factory references declared in the metadata annotations or deployment descriptor), and
must follow the application assembly instructions defined by the Application Assembler. To perform
his or her role, the Deployer uses tools provided by the EJB Container Provider.

The Deployer’s output is a set of enterprise beans (or an assembled application that includes enterprise
beans) that have been customized for the target operational environment, and that are deployed in a
specific EJB container.

The Deployer is an expert at a specific operational environment and is responsible for the deployment
of enterprise beans. For example, the Deployer is responsible for mapping the security roles defined by
the Bean Provider or Application Assembler to the user groups and accounts that exist in the
operational environment in which the enterprise beans are deployed.

The Deployer uses tools supplied by the EJB Container Provider to perform the deployment tasks. The
deployment process is typically two-stage:

The Deployer first generates the additional classes and interfaces that enable the container to manage

2.2. EJB Roles

10 Jakarta Enterprise Beans, Core Features DRAFT

the enterprise beans at runtime. These classes are container-specific.

The Deployer performs the actual installation of the enterprise beans and the additional classes and
interfaces into the EJB container.

In some cases, a qualified Deployer may customize the business logic of the enterprise beans at their
deployment. Such a Deployer would typically use the Container Provider’s tools to write relatively
simple application code that wraps the enterprise beans’ business methods.

2.2.4. EJB Server Provider

The EJB Server Provider is a specialist in the area of distributed transaction management, distributed
objects, and other lower-level system-level services.

The current EJB architecture assumes that the EJB Server Provider and the EJB Container Provider
roles are the same vendor. Therefore, it does not define any interface requirements for the EJB Server
Provider.

2.2.5. EJB Container Provider

The EJB Container Provider (Container Provider for short) provides:

The deployment tools necessary for the deployment of enterprise beans.

The runtime support for the deployed enterprise bean instances.

From the perspective of the enterprise beans, the container is a part of the target operational
environment. The container runtime provides the deployed enterprise beans with transaction and
security management, network distribution of remote clients, scalable management of resources, and
other services that are generally required as part of a manageable server platform.

The “EJB Container Provider’s responsibilities” defined by the EJB architecture are meant to be
requirements for the implementation of the EJB container and server. Since the EJB specification does
not architect the interface between the EJB container and server, it is left up to the vendor how to split
the implementation of the required functionality between the EJB container and server.

The expertise of the Container Provider is system-level programming, possibly combined with some
application-domain expertise. The focus of a Container Provider is on the development of a scalable,
secure, transaction-enabled container that is integrated with an EJB server. The Container Provider
insulates the enterprise bean from the specifics of an underlying EJB server by providing a simple,
standard API between the enterprise bean and the container. This API is the Enterprise JavaBeans
component contract.

The Container Provider typically provides support for versioning the installed enterprise bean
components. For example, the Container Provider may allow enterprise bean classes to be upgraded
without invalidating existing clients or losing existing enterprise bean objects.

2.2. EJB Roles

DRAFT Jakarta Enterprise Beans, Core Features 11

The Container Provider typically provides tools that allow the System Administrator to monitor and
manage the container and the beans running in the container at runtime.

2.2.6. System Administrator

The System Administrator is responsible for the configuration and administration of the enterprise’s
computing and networking infrastructure that includes the EJB server and container. The System
Administrator is also responsible for overseeing the well-being of the deployed enterprise beans
applications at runtime.

2.3. Enterprise Beans
Enterprise JavaBeans is an architecture for component-based transaction-oriented enterprise
applications.

2.3.1. Characteristics of Enterprise Beans

The essential characteristics of an enterprise bean are:

An enterprise bean typically contains business logic that operates on the enterprise’s data.

An enterprise bean’s instances are managed at runtime by a container.

An enterprise bean can be customized at deployment time by editing its environment entries.

Various service information, such as transaction and security attributes, may be specified together
with the business logic of the enterprise bean class in the form of metadata annotations, or separately,
in an XML deployment descriptor. This service information may be extracted and managed by tools
during application assembly and deployment.

Client access is mediated by the container in which the enterprise bean is deployed.

If an enterprise bean uses only the services defined by the EJB specification, the enterprise bean can be
deployed in any compliant EJB container. Specialized containers can provide additional services
beyond those defined by the EJB specification. An enterprise bean that depends on such a service can
be deployed only in a container that supports that service.

An enterprise bean can be included in an assembled application without requiring source code
changes or recompilation of the enterprise bean.

The Bean Provider defines a client view of an enterprise bean. The Bean Provider can manually define
the client view or it can be generated automatically by application development tools. The client view
is unaffected by the container and server in which the bean is deployed. This ensures that both the
beans and their clients can be deployed in multiple execution environments without changes or
recompilation.

2.3. Enterprise Beans

12 Jakarta Enterprise Beans, Core Features DRAFT

2.3.2. Flexible Model

The enterprise bean architecture is flexible enough to implement the following:

An object that represents a stateless service.

An object that represents a stateless service and that implements a web service endpoint.

An object that represents a stateless service and whose invocation is asynchronous, driven by the
arrival of messages.

An object that represents a conversational session with a particular client. Such session objects
automatically maintain their conversational state across multiple client-invoked methods.

Enterprise beans that are remotely accessible components are intended to be relatively coarse-grained
business objects or services (e.g. shopping cart, stock quote service). In general, fine-grained objects
should not be modeled as remotely accessible components.

Although the state management protocol defined by the Enterprise JavaBeans architecture is simple, it
provides an enterprise bean developer great flexibility in managing a bean’s state.

2.4. Enterprise Bean Object Types
The Enterprise JavaBeans architecture defines the following types of enterprise bean objects:

Session objects.

Message-driven objects.

Entity objects (optional).

Support for session objects and message-driven objects is required by this specification.

Earlier versions of the Enterprise JavaBeans specification required support for entity bean components
(not to be confused with the light-weight persistent entities defined by the Java Persistence API).
Support for entity bean components has been made optional for an implementation as of the 3.2
version of the EJB specification and is described in the EJB Optional Features document See EJB 3.2
Optional Features.

2.4.1. Session Objects

A typical session object has the following characteristics:

Executes on behalf of a single client.

Can be transaction-aware.

Updates shared data in an underlying database.

2.4. Enterprise Bean Object Types

DRAFT Jakarta Enterprise Beans, Core Features 13

Ejb.html#a9890
Ejb.html#a9890

Does not represent directly shared data in the database, although it may access and update such data.

May be relatively short-lived, or may have the same lifetime as that of the application.

Is removed when the EJB container crashes. The client has to re-establish a new session object to
continue computation.

A typical EJB container provides a scalable runtime environment to execute a large number of session
objects concurrently.

The EJB specification defines stateful , stateless, and singleton session beans. There are differences in
the API between stateful session beans, stateless session beans, and singleton session beans.

2.4.2. Message-Driven Objects

A typical message-driven object has the following characteristics:

Executes upon receipt of a single client message.

Is asynchronously invoked.

Can be transaction-aware.

May update shared data in an underlying database.

Does not represent directly shared data in the database, although it may access and update such data.

Is relatively short-lived.

Is stateless.

Is removed when the EJB container crashes. The container has to re-establish a new message-driven
object to continue computation.

A typical EJB container provides a scalable runtime environment to execute a large number of
message-driven objects concurrently.

2.4.3. Entity Objects (Optional)

A typical entity object has the following characteristics:

Is part of a domain model, providing an object view of data in the database.

Can be long-lived (lives as long as the data in the database).

The entity and its primary key survive the crash of the EJB container. If the state of an entity was being
updated by a transaction at the time the container crashed, the entity’s state is restored to the state of
the last committed transaction when the entity is next retrieved.

2.4. Enterprise Bean Object Types

14 Jakarta Enterprise Beans, Core Features DRAFT

See the EJB Optional Features See EJB 3.2 Optional Features document for details.

2.5. Standard Mapping to CORBA Protocols
To help interoperability for EJB environments that include systems from multiple vendors, the EJB
specification requires compliant implementations to support the interoperability protocol based on
CORBA/IIOP for remote invocations from Java EE clients. Implementations may support other remote
invocation protocols in addition to IIOP.

Chapter See Support for Distributed Interoperability summarizes the requirements for support for
distribution and interoperability.

2.6. Mapping to Web Service Protocols
To support web service interoperability, the EJB specification requires compliant implementations to
support XML-based web service invocations using WSDL and SOAP or plain XML over HTTP in
conformance with the requirements of the JAX-WS See Java™ API for XML-based Web Service, Web
Services for Java EE See Web Services for, and Web Services Metadata for the Java Platform See Web
Services Metadata for the Java Platform specifications.

Support for web services invocations using JAX-RPC See Java™ API for XML-based RPC is optional as of
the 3.2 release of the Enterprise JavaBeans specification. See the EJB Optional Features document See
EJB 3.2 for the complete description.

2.7. Pruning the EJB API
The Java EE 6 Specification adopted the process defined by the Java SE group for “pruning”
technologies from the platform in a careful and orderly way that minimizes the impact to developers
using these technologies while allowing the platform to grow even stronger.

The result of pruning a feature is not the actual deletion of the feature but rather the conversion of the
feature from a required part of the EJB API into an optional part of the EJB API. No actual removal
from the specification occurs, although the feature may be removed from products at the choice of the
product vendor.

Support for the following features has been made optional in the Enterprise JavaBeans specification as
of the 3.2 release and the content of the related chapters had been moved to the separate EJB Optional
Features document See EJB 3.2 Optional Features http://jcp.org/en/jsr/detail?id=345.. An
implementation of this specification is therefore not required to support any of these features.
However, if an implementation chooses to implement an optional feature, it must do so in accordance
with the requirements of this specification.

EJB 2.1 and earlier Entity Bean Component Contract for Container-Managed Persistence

EJB 2.1 and earlier Entity Bean Component Contract for Bean-Managed Persistence

2.5. Standard Mapping to CORBA Protocols

DRAFT Jakarta Enterprise Beans, Core Features 15

Ejb.html#a9890
Ejb.html#a3308
Ejb.html#a9881
Ejb.html#a9879
Ejb.html#a9878
Ejb.html#a9878
Ejb.html#a9873
Ejb.html#a9890
Ejb.html#a9890
Ejb.html#a9890
Ejb.html#a9890
Ejb.html#a9890

Client View of an EJB 2.1 and earlier Entity Bean

EJB QL: EJB Query Language for Container-Managed Persistence Query Methods

JAX-RPC Based Web Service Endpoints

JAX-RPC Web Service Client View

2.8. Relationship to Managed Bean Specification
The Managed Beans Specification See Managed Beans defines the minimal requirements for container-
managed objects, otherwise known under the acronym “POJOs” (Plain Old Java Objects), within the
Java EE Platform. Managed Beans support a small set of basic services, such as resource injection,
lifecycle callbacks and interceptors.

A session bean component is a Managed Bean. The EJB component model extends the basic Managed
Bean model in many areas (component definition, naming, lifecycle, threading, etc.)

2.9. Relationship to Contexts and Dependency Injection
(CDI) Specification
The Context and Dependency Injection Specification See Contexts and Dependency provides a uniform
framework for the dependency injection and lifecycle management of “managed beans” and adds
contextual lifecycle management to the EJB component model.

An EJB packaged into a CDI bean archive and not annotated with javax.enterprise.inject.Vetoed
annotation, is considered a CDI-enabled bean. The CDI container performs dependency injection on all
instances of CDI-enabled session and message-driven beans, even those which are not contextual
instances:

A session bean instance obtained via dependency injection is a contextual instance, i.e. it is bound to a
lifecycle context and is available to other objects that execute in the same context

A message-driven bean instance is always non-contextual, i.e. it may not be injected into other objects.

2.10. Relationship to the Java API for RESTful Web
Services (JAX-RS) Specification
The Java API for RESTful Web Services Specification See The Java API for RESTful defines a set of Java
APIs for the development of Web services built according to the Representational State Transfer (REST)
architectural style.

The JAX-RS API provides a set of annotations and associated classes and interfaces that may be used to
expose beans as Web resources.

2.8. Relationship to Managed Bean Specification

16 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9886
Ejb.html#a9888
Ejb.html#a9889

In a product that supports the JAX-RS specification, stateless and singleton session beans must be
supported as root resource classes, providers, and javax.ws.rs.core.Application subclasses. JAX-RS
annotations may be applied to a session bean class, methods of a session bean’s no-interface view, or a
session bean’s local business interface.

2.10. Relationship to the Java API for RESTful Web Services (JAX-RS) Specification

DRAFT Jakarta Enterprise Beans, Core Features 17

Chapter 3. Client View of a Session Bean
This chapter describes the client view of a session bean. The session bean itself implements the
business logic. The bean’s container provides functionality for remote access, security, concurrency,
transactions, and so forth.

While classes implemented by the container provide the client view of the session bean, the container
itself is transparent to the client.

3.1. Overview
For a client, a session object is a non-persistent object that implements some business logic running on
the server. One way to think of a session object is as a logical extension of the client program that runs
on the server. A stateless or stateful session bean object is not shared among multiple clients.

A client can invoke a session bean synchronously or asynchronously. An asynchronous method can
return a Future<V> object that allows the client to retrieve a result value, check for exceptions, or
attempt to cancel an in-progress invocation.

From its creation until destruction, a session object lives in a container. The container provides
security, concurrency, transactions, swapping to secondary storage, and other services for the session
object transparently to the client.

Each session object has an identity which, in general, does not survive a crash and restart of the
container, although a high-end container implementation can mask container and server crashes to a
remote or web service client.

A client never directly accesses instances of the session bean’s class. A client accesses a session object
through the session bean’s client view.

The client view of a session object is independent of the implementation of the session bean and the
container.

The client of a session bean may be a local client, a remote client, or a web service client, depending on
the view(s) provided by the bean and used by the client.

Multiple enterprise beans can be installed in a container. The container allows the clients of session
beans that provide local or remote client views to obtain the business interfaces and/or home
interfaces of the installed enterprise beans through dependency injection or to look them up via JNDI.

While it is possible to provide more than one client view for a session bean, typically only one will be
provided.

A remote client of an session bean can be another enterprise bean deployed in the same or different
container; or it can be an arbitrary Java program, such as an application, applet, or servlet. The client
view of a session bean can also be mapped to non-Java client environments, such as CORBA clients that

3.1. Overview

18 Jakarta Enterprise Beans, Core Features DRAFT

are not written in the Java programming language.

The interface used by a remote client of a session bean is implemented by the container as a remote
business interface (or a remote EJBObject interface), and the remote client view of a session bean is
location-independent. A client running in the same JVM as the session object uses the same API as a
client running in a different JVM on the same or different machine.

Use of a session bean’s local client view entails the collocation of the local client and the session. The
local client of an enterprise bean must be collocated in the same container as the bean. The local client
view is not location-independent.

The client of a stateless session bean or singleton session bean may be a web service client. Only a
stateless session bean or singleton session bean may provide a web service client view. A web service
client makes use of the enterprise bean’s web service client view, as described by a WSDL document.
The bean’s client view web service endpoint is in terms of a JAX-WS endpoint See Java™ API for XML-
based Web Service. Web service clients are discussed in Sections See Web Service Clients and See The
Web Service Client View of a Stateless or Singleton Session Bean.

The considerations that should be taken into account in determining the client view to be used for a
session bean are further described in See Local, Remote, and Web Service Client Views.

3.2. Local, Remote, and Web Service Client Views
This section describes some of the considerations the Bean Provider should take into account in
determining the client view to provide for an enterprise bean.

Terminology note _:_

EJB 3.0 significantly simplified the client view of a session bean. This specification distinguishes among
the client view interfaces that were defined by the EJB 3.0 and later API and the EJB 2.1 and earlier API
as follows:

 The term _remote business interface_ _is
used to refer to the business interface of an EJB 3.x session bean that
supports remote access._

 The term _remote component interface_ _is
used to refer to the remote component interface of the EJB 2.1 client
view. This interface is an EJBObject interface._

3.2. Local, Remote, and Web Service Client Views

DRAFT Jakarta Enterprise Beans, Core Features 19

Ejb.html#a9881
Ejb.html#a9881
Ejb.html#a271
Ejb.html#a405
Ejb.html#a405
Ejb.html#a224

 The term _local business interface_
_refers to the local business interface of an EJB 3.x session bean that
supports local access._

 The term _local component interface_ _is
used to refer to the local component interface of the EJB 2.1 client
view. This interface is an EJBLocalObject interface._

The term business interface is used to refer to a local or remote business interface.

The term component interface is used to refer to a local or remote component interface (EJBLocalObject
or EJBObject interface).

The term business method is used to refer to a method of an enterprise bean that is available for client
execution. It may be a method exposed by the local or remote business interface, by the no-interface
view, by the local component interface, by the remote component interface, or by the web service
client view.

3.2.1. Remote Clients

The remote client view of an enterprise bean is location independent. A client running in the same JVM
as a bean instance uses the same API to access the bean as a client running in a different JVM on the
same or different machine.

The arguments and results of the methods of the remote interfaces are passed by value.

For a session bean client and component written to the EJB 3.x API, a remote client accesses a session
bean through the bean’s remote business interface. For a session bean client and component written to
the EJB 2.1 and earlier APIs, the remote client accesses the session bean through the session bean’s
remote home and remote component interfaces.

The EJB 2.1 and earlier API required that a remote client access the stateful or stateless session bean by
means of the session bean’s remote home and remote component interfaces. These interfaces remain
available for use with EJB 3.x beans, and are described in Section See Remote and Local Client View of
Session Beans Written to the EJB 2.1 Client View API.

3.2.2. Local Clients

Session beans may have local clients. A local client is a client that is collocated in the same JVM with
the session bean that provides the local client view and which may be tightly coupled to the bean. A
local client of a session bean may be another enterprise bean or a web component.

Access to an enterprise bean through the local client view requires the collocation in the same JVM of
both the local client and the enterprise bean that provides the local client view. The local client view

3.2. Local, Remote, and Web Service Client Views

20 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a422
Ejb.html#a422

therefore does not provide the location transparency provided by the remote client view.

Access to an enterprise bean through the local client view is only required to be supported for local
clients packaged within the same application as the enterprise bean that provides the local client view.
Compliant implementations of this specification may optionally support access to the local client view
of an enterprise bean from a local client packaged in a different application. The configuration
requirements for inter-application access to the local client view are vendor-specific and are outside
the scope of this specification. Applications relying on inter-application access to the local client view
are non-portable.

The arguments and results of the methods of the local client view are passed “by reference”2.
Enterprise beans that provide a local client view should therefore be coded to assume that the state of
any Java object that is passed as an argument or result is potentially shared by caller and callee.

The Bean Provider must be aware of the potential sharing of objects passed through invocations of the
local client view. In particular, the Bean Provider must be careful that the state of one enterprise bean
is not assigned as the state of another. In general, the references that are passed across invocations of
the local client view cannot be used outside of the immediate call chain and must never be stored as
part of the state of another enterprise bean. The Bean Provider must also exercise caution in
determining which objects to pass across the local view. This caution applies particularly in the case
where there is a change in transaction or security context.

For a session bean client and component written to the EJB 3.x API, a local client accesses a session
bean through the bean’s local business interface or through a no-interface client view representing all
non-static public methods of the bean class. For a session bean client and component written to the EJB
2.1 and earlier APIs, the local client accesses the enterprise bean through the bean’s local home and
local component interfaces. The container object that implements a local interface or the no-interface
local view is a local Java object.

The EJB 2.1 and earlier API required that a local client access a stateful or stateless session bean by
means of the session bean’s local home and local component interfaces. These interfaces remain
available for use with EJB 3.x beans, and are described in Section See Remote and Local Client View of
Session Beans Written to the EJB 2.1 Client View API.

3.2.3. Choosing Between a Local or Remote Client View

The following considerations should be taken into account in determining whether a local or remote
access should be used for an enterprise bean.

The remote programming model provides location independence and flexibility with regard to the
distribution of components in the deployment environment. It provides a loose coupling between the
client and the bean.

Remote calls involve pass-by-value. This copy semantics provides a layer of isolation between caller
and callee, and protects against the inadvertant modification of data. The client and the bean may be
programmed to assume this parameter copying.

3.2. Local, Remote, and Web Service Client Views

DRAFT Jakarta Enterprise Beans, Core Features 21

#a10219
Ejb.html#a422
Ejb.html#a422

Remote calls are potentially expensive. They involve network latency, overhead of the client and
server software stacks, argument copying, etc. Remote calls are typically programmed in a coarse-
grained manner with few interactions between the client and bean.

The objects that are passed as parameters on remote calls must be serializable.

When the EJB 2.1 and earlier remote home and remote component interfaces are used, the narrowing
of remote types requires the use of javax.rmi.PortableRemoteObject.narrow rather than Java language
casts.

Remote calls may involve error cases due to communication, resource usage on other servers, etc.,
which are not expected in local calls. When the EJB 2.1 and earlier remote home and remote
component interfaces are used, the client has to explicitly program handlers for handling the
java.rmi.RemoteException .

Because of the overhead of the remote programming model, it is typically used for relatively coarse-
grained component access.

Local calls involve pass-by-reference. The client and the bean may be programmed to rely on pass-by-
reference semantics. For example, a client may have a large document which it wants to pass on to the
bean to modify, and the bean further passes on. In the local programming model the sharing of state is
possible. On the other hand, when the bean wants to return a data structure to the client but the bean
does not want the client to modify it, the bean explicitly copies the data structure before returning it,
while in the remote programming model the bean does not copy the data structure because it assumes
that the system will do the copy.

Because local calls involve pass-by-reference, the local client and the enterprise bean providing the
local client view are collocated.

The collocation entailed by the local programming model means that the enterprise bean cannot be
deployed on a node different from that of its client—thus restricting the distribution of components.

Because the local programming model provides more lightweight access to a component, it better
supports more fine-grained component access.

Note that although collocation of the remote client and the enterprise bean may allow the container to
reduce the overhead of calls through a remote business interface or remote component interface, such
calls are still likely to be less efficient than calls made using a local interface because any optimizations
based on collocation must be done transparently.

The choice between the local and the remote programming model is a design decision that the Bean
Provider makes when developing the enterprise bean.

While it is possible to provide both a remote client view and a local client view for an enterprise bean,
more typically only one or the other will be provided.

3.2. Local, Remote, and Web Service Client Views

22 Jakarta Enterprise Beans, Core Features DRAFT

3.2.4. Web Service Clients

Stateless session beans and singleton session beans may have web service clients.

A web service client accesses a session bean through the web service client view. The web service
client view is described by the WSDL document for the web service that the bean implements. WSDL is
an XML format for describing a web service as a set of endpoints operating on messages. The abstract
description of the service is bound to an XML based protocol (SOAP See W3C: SOAP 1.2.) and
underlying transport (HTTP or HTTPS) by means of which the messages are conveyed between client
and server. (See references See Java™ API for XML-based, See Web Services Description Language
(WSDL), See Web, See Web Services for Java EE, See Java™ API for XML-based Web Service).

The web service methods of a session bean provide the basis of the web service client view of the bean
that is exported through WSDL. See references See Web Services Metadata for the Java Platform and
See Java™ API for XML-based RPC for a description of how Java language metadata annotations may be
used to specify a session bean’s web services client view.

A bean’s web service client view may be initially defined by a WSDL document and then mapped to a
web service endpoint that conforms to this, or an existing bean may be adapted to provide a web
service client view. Reference See Web Services for Java EE describes various design-time scenarios
that may be used for EJB web service endpoints.

EJB 2.1 required the Bean Provider to define a web service endpoint interface for a stateless session
bean when he or she wished to expose the functionality of the bean as a web service endpoint through
WSDL. This requirement to define the web service endpoint interface is removed in EJB 3.0 and later.
See See Web Services Metadata for the Java.

The web service client view of an enterprise bean is location independent and remotable.

Web service clients may be Java clients and/or clients not written in the Java programming language. A
web service client that is a Java client accesses the web service by means of the JAX-WS client APIs.
Access through web service clients occurs through SOAP 1.1, SOAP 1.2 or plain XML over HTTP(S).

While it is possible to provide a web service client view in addition to other client views for an
enterprise bean, more typically only one will be provided. There is no prohibition against using the
same interface as both a remote business interface and a web service endpoint interface. In that case it
is the Bean Provider’s responsibility to ensure that the interface conforms to the type requirements of
each client view through which it is exposed.

3.3. EJB Container
An EJB container (container for short) is a system that functions as the “container” for enterprise
beans. Multiple enterprise beans can be deployed in the same container. The container is responsible
for making the business interfaces and/or home interfaces of its deployed enterprise beans available to
the client through dependency injection and/or through lookup in the JNDI namespace.

3.3. EJB Container

DRAFT Jakarta Enterprise Beans, Core Features 23

Ejb.html#a9875
Ejb.html#a9873
Ejb.html#a9874
Ejb.html#a9874
Ejb.html#a9878
Ejb.html#a9879
Ejb.html#a9881
Ejb.html#a9878
Ejb.html#a9873
Ejb.html#a9879
Ejb.html#a9878

3.4. Client View of Session Beans Written to the EJB 3.x
Simplified API
The EJB 3.x local or remote client of a session bean written to the EJB 3.x API accesses a session bean
through its business interface. The business interface of an EJB 3.x session bean is an ordinary Java
interface, regardless of whether local or remote access is provided for the bean. In particular, the EJB
3.x session bean business interface is not one of the interface types required by earlier versions of the
EJB specification (i.e., EJBObject or EJBLocalObject interface). A local client may also access a session
bean through a no-interface view that exposes all non-static public methods of the bean class.

3.4.1. Obtaining a Session Bean’s Business Interface

A client can obtain a session bean’s business interface through dependency injection or lookup in the
JNDI namespace.

For example, the business interface Cart for the CartBean session bean may be obtained using
dependency injection as follows:

@EJB Cart cart;

The Cart business interface could also be looked up using JNDI as shown in the following code segment
using the lookup method provided by the EJBContext interface. In this example, a reference to the
client bean’s SessionContext object is obtained through dependency injection:

@Resource SessionContext ctx;

…

Cart cart = (Cart)ctx.lookup("cart");

In both cases, the syntax used in obtaining the reference to the Cart business interface is independent
of whether the business interface is local or remote. In the case of remote access, the actual location of
a referenced enterprise bean and EJB container are, in general, transparent to the client using the
remote business interface of the bean.

3.4.2. Obtaining a Reference to the No-interface View

A client can obtain a reference to a session bean’s no-interface view through dependency injection or
lookup in the JNDI namespace.

For example, the no-interface view of the CartBean session bean with bean class com.acme.CartBean
may be obtained using dependency injection as follows:

@EJB CartBean cart;

The CartBean no-interface view could also be looked up via JNDI as shown in the following code

3.4. Client View of Session Beans Written to the EJB 3.x Simplified API

24 Jakarta Enterprise Beans, Core Features DRAFT

segment using the lookup method provided by the EJBContext interface. In this example, a reference to
the client bean’s SessionContext object is obtained through dependency injection:

@Resource SessionContext ctx;

…

CartBean cart = (CartBean)ctx.lookup("cart");

Despite the fact that the client reference for the no-interface view has the type of the bean class, the
client never directly uses the new operator to acquire the reference.

3.4.3. Session Bean’s Business Interface

The session bean’s business interface is an ordinary Java interface. It contains the business methods of
the session bean.

A reference to a session bean’s business interface may be passed as a parameter or return value of a
business interface method. If the reference is to a session bean’s local business interface, the reference
may only be passed as a parameter or return value of a local business interface method or a no-
interface view method.

The business interface of a stateful session bean typically contains a method to initialize the state of
the session object and a method to indicate that the client has finished using the session object and that
it can be removed. See See Session Bean Component Contract.

It is invalid to reference a session object that does not exist. If a stateful session bean has been
removed, attempted invocations on the stateful session bean business interface result in the
javax.ejb.NoSuchEJBException.3 If a singleton session bean did not successfully initialize, attempted
invocations on the singleton session bean business interface result in the
javax.ejb.NoSuchEJBException.

The container provides an implementation of a session bean’s business interface such that when the
client invokes a method on the instance of the business interface, the business method on the session
bean instance and any interceptor methods are invoked as needed.

The container makes the session bean’s business interface available to the EJB 3.x client through
dependency injection and through lookup in the JNDI namespace. Section See EJB References describes
in further detail how clients can obtain references to EJB business interfaces.

3.4.4. Session Bean’s No-Interface View

A session bean’s no-interface view is a variation of the local view that exposes the non-static public
methods of the bean class without the use of a separate business interface.

A reference to the no-interface view may be passed as a parameter or return value of any local
business interface or no-interface view method.

3.4. Client View of Session Beans Written to the EJB 3.x Simplified API

DRAFT Jakarta Enterprise Beans, Core Features 25

Ejb.html#a608
#a10220
Ejb.html#a3912

The container provides an implementation of a reference to a no-interface view such that when the
client invokes a method on the reference, the business method on the session bean instance and any
interceptor methods are invoked as needed. As with the session bean remote and local views, a client
acquires a no-interface view reference via lookup or injection only. A client does not directly
instantiate (use the new operator on) the bean class to acquire a reference to the no-interface view.

Only public methods of the bean class and of any superclasses except java.lang.Object may be invoked
through the no-interface view. Attempted invocations of methods with any other access modifiers via
the no-interface view reference must result in the javax.ejb.EJBException.

When interacting with a reference to the no-interface view, the client must not make any assumptions
regarding the internal implementation of the reference, such as any instance-specific state that may be
present in the reference. Although the reference object is type-compatible with the corresponding
bean class type, there is no prescribed relationship between the internal implementation of the
reference and the implementation of the bean instance.

The developer of an enterprise bean that exposes a no-interface view must not make any assumptions
about the number of times the bean class no-arg constructor will be called. For example, it is possible
that the acquisition of a client reference to the no-interface view will result in the invocation of the
bean class constructor. It is recommended that the Bean Provider place component initialization logic
in a PostConstruct method instead of the bean class no-arg constructor.

It is invalid to reference a session object that does not exist. If a stateful session bean has been
removed, attempted invocations on the no-interface view reference must result in the
javax.ejb.NoSuchEJBException. If a singleton session bean did not successfully initialize, attempted
invocations on the singleton session bean’s no-interface view reference result in the
javax.ejb.NoSuchEJBException.

3.4.5. Client View of Session Object’s Life Cycle

From the point of view of the client, a session object exists once the client has obtained a reference to
its business interface—whether through dependency injection or from lookup of the business interface
in JNDI.

A client that has a reference to a session object’s business interface can then invoke business methods
on the interface and/or pass the reference as a parameter or return value of a business interface
method.4

A client may remove a stateful session bean by invoking a method of its business interface designated
as a Remove method.

The lifecycle of a stateless session bean does not require that it be removed by the client. Removal of a
stateless session bean instance is performed by the container, transparently to the client.

The lifecycle of a singleton session bean does not require that it be removed by the client. Removal of a
singleton session bean instance is performed by the container, transparently to the client.

3.4. Client View of Session Beans Written to the EJB 3.x Simplified API

26 Jakarta Enterprise Beans, Core Features DRAFT

#a10221

The contracts for session bean lifecycle are described in See Session Bean Component Contract.

3.4.6. Example of Obtaining and Using a Session Object

An example of the session bean runtime objects is illustrated by the following diagram:

===

Session Bean Example Objects

A client obtains a reference to a Cart session object, which provides a shopping service, by means of
dependency injection or using JNDI lookup. The client then uses this session object to fill the cart with
items and to purchase its contents. Cart is a stateful session.

In this example, the client obtains a reference to the Cart ’s business interface through dependency
injection. The client then uses the business interface to initialize the session object and add a few items
to it. The startShopping method is a business method that is provided for the initialization of the
session object.

@EJB Cart cart;

…

cart.startShopping();

cart.addItem(66);

cart.addItem(22);

Finally the client purchases the contents of the shopping cart, and finishes the shopping activity.5

cart.purchase();

cart.finishShopping();

3.4. Client View of Session Beans Written to the EJB 3.x Simplified API

DRAFT Jakarta Enterprise Beans, Core Features 27

Ejb.html#a608
#a10222

3.4.7. Session Object Identity

A client can test two EJB 3.x remote or local view references for identity by means of the Object.equals
and Object.hashCode methods.

3.4.7.1. Stateful Session Beans

A stateful session object has a unique identity that is assigned by the container at the time the object is
created. A client of the stateful session bean business interface can determine if two business interface
or no-interface view references refer to the same session object by use of the equals method.

For example,

@EJB Cart cart1;

@EJB Cart cart2;

…

if (cart1.equals(cart1)) \{ // this test must return true

...

}

…

if (cart1.equals(cart2)) \{ // this test must return false

...

}

All stateful session bean references to the same business interface for the same stateful session bean
instance will be equal. All references to the no-interface view of the same stateful session bean
instance will be equal. Stateful session bean references to different interface types or between an
interface type and a no-interface view or to different stateful session bean instances will not have the
same identity.

3.4.7.2. Stateless Session Beans

All business object references of the same interface type for the same stateless session bean have the
same object identity, which is assigned by the container. All references to the no-interface view of the
same stateless session bean have the same object identity.

For example,

3.4. Client View of Session Beans Written to the EJB 3.x Simplified API

28 Jakarta Enterprise Beans, Core Features DRAFT

@EJB Cart cart1;

@EJB Cart cart2;

…

if (cart1.equals(cart1)) \{ // this test must return true

...

}

…

if (cart1.equals(cart2)) \{ // this test must also return true

...

}

The equals method always returns true when used to compare references to the same business
interface type of the same stateless session bean. The equals method always returns true when used to
compare references to the no-interface view of the same stateless session bean. Stateless session bean
references to either different business interface types or between an interface type and a no-interface
view or to different session beans will not be equal.

3.4.7.3. Singleton Session Beans

All business object references of the same interface type for the same singleton session bean have the
same object identity, which is assigned by the container. All references to the no-interface view of the
same singleton session bean have the same object identity.

For example,

@EJB Shared shared1;

@EJB Shared shared2;

…

if (shared1.equals(shared1)) \{ // this test must return true

...

}

3.4. Client View of Session Beans Written to the EJB 3.x Simplified API

DRAFT Jakarta Enterprise Beans, Core Features 29

…

if (shared1.equals(shared2)) \{ // this test must also return true

...

}

The equals method always returns true when used to compare references to the same business
interface type of the same singleton session bean. The equals method always returns true when used to
compare references to the no-interface view of the same singleton session bean. Session bean
references to either different business interface types or between an interface type and a no-interface
view or to different session beans will not be equal.

3.4.8. Asynchronous Invocations

By default, session bean invocations through the remote, local, and no-interface views are
synchronous. The client blocks for the duration of the invocation and is returned control only after all
invocation processing has completed. Clients can achieve asynchronous invocation behavior by
invoking session bean methods that have been designed to support asynchrony.

When a client invokes an asynchronous method, the container returns control to the client
immediately and continues processing the invocation on a separate thread of execution.

The client should expect to receive a system exception (in the form of the javax.ejb.EJBException) on
the client thread if the container has problems allocating the internal resources required to support
the asynchronous method.6 If a system exception is received on the client thread, the client can expect
that the container will not be able to dispatch the asynchronous method. The client may wish to retry
the asynchronous method at a later time.

If no system exception is received, the client can expect that the container will make an attempt to
dispatch the asynchronous method. An exception resulting from the asynchronous method execution
(e.g. an authorization failure, transaction commit failure, application exception, etc.) will be available
via the Future<V> object.

3.4.8.1. Return Values

Asynchronous methods have a return type of void or Future<V>, where V represents the result value of
the asynchronous invocation.

For Future<V>, the object returned from the client invocation is a container provided object. This
object allows the client to retrieve the invocation result value, discover any invocation exception, or
attempt to cancel the asynchronous invocation.

All methods of the java.util.concurrent.Future interface are supported. Unless otherwise noted, the
behavior matches that described in its javadoc entry See Java™ Platform.

3.4. Client View of Session Beans Written to the EJB 3.x Simplified API

30 Jakarta Enterprise Beans, Core Features DRAFT

#a10223
Ejb.html#a9883

Future.cancel(boolean mayInterruptIfRunning)

If a client calls cancel on its Future object, the container will attempt to cancel the associated
asynchronous invocation only if that invocation has not already been dispatched. There is no
guarantee that an asynchronous invocation can be cancelled, regardless of how quickly cancel is called
after the client receives its Future object. If the asynchronous invocation cannot be cancelled, the
method must return false. If the asynchronous invocation is successfully cancelled, the method must
return true.

The mayInterruptIfRunning flag controls whether, in the case that the asynchronous invocation can
not be cancelled, the target enterprise bean should have visibility to the client’s cancel attempt. If the
mayInterruptIfRunning flag is set to true, then subsequent calls to the SessionContext.wasCancelCalled
method from within the associated dispatched asynchronous invocation must return true. If the
mayInterruptIfRunning flag is set to false, then subsequent calls to the SessionContext.wasCancelCalled
method from within the associated dispatched asynchronous invocation must return false.

Note that all the client Future cancel semantics (isCancelled, CancellationException, etc.) depend only
on the result of Future.cancel. If the dispatched asynchronous method does decide to short circuit its
processing as a result of checking SessionContext, it is the responsibility of the Bean Provider to decide
how to convey that information to the client. Typically, that is done through a special return value or
exception delivered via Future.get().

Future.get

The client calls one of the two Future.get methods in order to retrieve the result value or resulting
exception from the associated asynchronous invocation. This specification recommends that unless the
client successfully cancels the asynchronous invocation it should call get on every Future object it
receives. If a call to get successfully returns a result value or throws an ExecutionException, all
subsequent calls to get on the same Future object must result in that same behavior.

The EJB Container Provider is permitted to define a timeout value that governs the maximum amount
of time the container maintains result values for completed asynchronous invocations. The
configuration of such a timeout is beyond the scope of this specification.

3.4.9. Concurrent Access to Session Bean References

It is permissible to acquire a session bean reference and attempt to invoke the same reference object
concurrently from multiple threads. However, the resulting client behavior on each thread depends on
the concurrency semantics of the target bean. See See Serializing Session Bean Methods and See
Singleton Session Bean Concurrency for details of the concurrency behavior for session beans.

3.5. The Web Service Client View of a Stateless or
Singleton Session Bean
From the perspective of the client, the existence of the stateless session bean or singleton session bean

3.5. The Web Service Client View of a Stateless or Singleton Session Bean

DRAFT Jakarta Enterprise Beans, Core Features 31

Ejb.html#a778
Ejb.html#a1257
Ejb.html#a1257

is completely hidden behind the web service endpoint that the bean implements.

The web service client’s access to the web service functionality provided by a session bean occurs
through a web service endpoint. In the case of Java clients, this endpoint is accessed as a JAX-WS
service endpoint using the JAX-WS client view APIs, as described in See Java™ API for XML-based Web.

The following diagram illustrates the view that is provided to Java EE web service clients of a stateless
session bean through the JAX-WS client view APIs.

===

Web Service Client View of Stateless Session Beans Deployed in a Container

3.5.1. JAX-WS Web Service Clients

The Java EE web service client obtains a reference to the service instance of the javax.xml.ws.Service
class through dependency injection or using JNDI. The service class can be a generic
javax.xml.ws.Service class or a generated service class which extends the javax.xml.ws.Service class.
The service instance is then used to obtain a port object for the web service endpoint. The mechanisms
and APIs for client web service access are described in the JAX-WS specification See Java™ API for and
in the Web Services for Java EE specification See Web Services for Java.

The following example illustrates how a JAX-WS client obtains a reference to a web service endpoint,
obtains a port object for the web service endpoint, and invokes a method on that endpoint.

3.5. The Web Service Client View of a Stateless or Singleton Session Bean

32 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9881
Ejb.html#a9881
Ejb.html#a9879

@WebServiceRef

public StockQuoteService stockQuoteService;

…

StockQuoteProvider sqp =

stockQuoteService.getStockQuoteProviderPort();

float quotePrice = sqp.getLastTradePrice("ACME");

…

The use of service references and the WebServiceRef annotation are described in further detail in See
Java™ API for XML-based Web Service.

3.6. Remote and Local Client View of Session Beans
Written to the EJB 2.1 Client View API
The remainder of this chapter describes the session bean client view defined by the EJB 2.1 and earlier
specifications. Support for the definition and use of these earlier client interfaces is required to be
provided by implementations of this specification. The EJB 2.1 remote and local client views are not
supported for singleton session beans.

3.6.1. Locating a Session Bean’s Home Interface

The EJB 2.1 and earlier specifications required that the client first obtain a reference to a session
bean’s home interface, and then use the home interface to obtain a reference to the bean’s component
interface. This earlier programming model continues to be supported by this specification. Both
dependency injection and use of the EJBContext lookup method may be used as an alternative to the
JNDI APIs to obtain a reference to the home interface.

For example, an EJB 3.x client, com.acme.example.MySessionBean , might obtain a reference to a bean’s
home interface as follows:

@EJB CartHome cartHome;

This home interface could be looked up in JNDI using the EJBContext lookup method as shown in the
following code segment:

@Resource SessionContext ctx;

…

CartHome cartHome =

3.6. Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View API

DRAFT Jakarta Enterprise Beans, Core Features 33

Ejb.html#a9881
Ejb.html#a9881

 (CartHome)ctx.lookup("
com.acme.example.MySessionBean/ cartHome");

When the EJBContext lookup method is used to look up a home interface, the use of
javax.rmi.PortableRemoteObject.narrow is not required.

The following code segments illustrate how the home interface is obtained when the JNDI APIs are
used directly, as was required in the EJB 2.1 programming model. For example, the remote home
interface for the Cart session bean can be located using the following code segment:

Context initialContext = new InitialContext();

CartHome cartHome =

(CartHome)javax.rmi.PortableRemoteObject.narrow(

initialContext.lookup("java:comp/env/ejb/cart"),

CartHome.class);

If the Cart session bean provides a local client view instead of a remote client view and CartHome is a
local home interface, this lookup might be as follows:

Context initialContext = new InitialContext();

CartHome cartHome = (CartHome)

initialContext.lookup("java:comp/env/ejb/cart");

3.6.2. Session Bean’s Remote Home Interface

This section is specific to session beans that provide a remote client view using the remote component
interface and remote home interface.

This was the only way of providing a remote client view in the EJB 2.1 and earlier releases. The remote
client view provided by the business interface under the EJB 3.x API, as described in See Client View of
Session Beans Written to the EJB 3.x Simplified API, is now to be preferred.

The container provides the implementation of the remote home interface for each session bean that
defines a remote home interface that is deployed in the container. The object that implements a session
bean’s remote home interface is called a session EJBHome object. The container makes the session
bean’s remote home interface available to the client through dependency injection or through lookup
in the JNDI namespace.

The remote home interface allows a client to do the following:

3.6. Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View API

34 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a283
Ejb.html#a283

Create a new session object.

Remove a session object.

Get the javax.ejb.EJBMetaData interface for the session bean. The javax.ejb.EJBMetaData interface is
intended to allow application assembly tools to discover information about the session bean, and to
allow loose client/server binding and client-side scripting.

Obtain a handle for the remote home interface. The home handle can be serialized and written to
stable storage. Later, possibly in a different JVM, the handle can be deserialized from stable storage
and used to obtain back a reference of the remote home interface.

The life cycle of the distributed object implementing the remote home interface (the EJBHome object)
or the local Java object implementing the local home interface (the EJBLocalHome object) is container-
specific. A client application should be able to obtain a home interface, and then use it multiple times,
during the client application’s lifetime.

A client can pass a remote home object reference to another application. The receiving application can
use the home interface in the same way that it would use a remote home object reference obtained via
JNDI.

3.6.2.1. Creating a Session Object

A home interface defines one or more create<METHOD> methods, one for each way to create a session
object. The arguments of the create methods are typically used to initialize the state of the created
session object.

The return type of a create<METHOD> method on the remote home interface is the session bean’s
remote component interface.

The following example illustrates a remote home interface that defines two create<METHOD>
methods:

public interface CartHome extends javax.ejb.EJBHome \{

 Cart create(String customerName, String
account)

throws RemoteException, BadAccountException,

CreateException;

3.6. Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View API

DRAFT Jakarta Enterprise Beans, Core Features 35

 Cart createLargeCart(String customerName,
String account)

throws RemoteException, BadAccountException,

CreateException;

}

The following example illustrates how a client creates a new session object using a create <METHOD>
method of the CartHome interface:

cartHome.create("John", "7506");

3.6.2.2. Removing a Session Object

A remote client may remove a session object using the remove() method of the javax.ejb.EJBObject
interface, or the remove(Handle handle) method of the javax.ejb.EJBHome interface.

Because session objects do not have primary keys that are accessible to clients, invoking the
javax.ejb.EJBHome.remove(Object primaryKey) method on a session results in a
javax.ejb.RemoveException.

3.6.3. Session Bean’s Local Home Interface

This section is specific to session beans that provide a local client view using the local component
interface and local home interface.

This was the only way of providing a local client view in the EJB 2.1 and earlier releases. The local
client view provided by the business interface under the EJB 3.x API, as described in See Client View of
Session Beans Written to the EJB 3.x Simplified API, is now to be preferred.

The container provides the implementation of the local home interface for each session bean that
defines a local home interface that is deployed in the container. The object that implements a session
bean’s local home interface is called a session EJBLocalHome object. The container makes the session
bean’s local home interface available to the client through JNDI.

The local home interface allows a local client to do the following:

Create a new session object.

Remove a session object.

A client can pass a local home object reference to another application through its local component

3.6. Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View API

36 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a283
Ejb.html#a283

interface. A local home object reference cannot be passed as an argument or result of a method on an
enterprise bean’s remote home or remote component interface.

3.6.3.1. Creating a Session Object

A local home interface defines one or more create<METHOD> methods, one for each way to create a
session object. The arguments of the create methods are typically used to initialize the state of the
created session object.

The return type of a create<METHOD> method on the local home interface is the session bean’s local
component interface.

The following example illustrates a local home interface that defines two create<METHOD> methods:

public interface CartHome extends javax.ejb.EJBLocalHome \{

 Cart create(String customerName, String
account)

throws BadAccountException, CreateException;

 Cart createLargeCart(String customerName,
String account)

throws BadAccountException, CreateException;

}

The following example illustrates how a client creates a new session object using a create <METHOD>
method of the CartHome interface:

cartHome.create("John", "7506");

3.6.3.2. Removing a Session Object

A local client may remove a session object using the remove() method of the javax.ejb.EJBLocalObject
interface.

Because session objects do not have primary keys that are accessible to clients, invoking the
javax.ejb.EJBLocalHome.remove(Object primaryKey) method on a session results in a
javax.ejb.RemoveException.

3.6. Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View API

DRAFT Jakarta Enterprise Beans, Core Features 37

3.6.4. EJBObject and EJBLocalObject

A remote or local client that uses the EJB 2.1 client view APIs uses the session bean’s component
interface to access a session bean instance. The class that implements the session bean’s component
interface is provided by the container. Instances of a session bean’s remote component interface are
called session EJBObjects . Instances of a session bean’s local component interface are called session
EJBLocalObjects .

A session EJBObject supports:

The business logic methods of the object. The session EJBObject delegates invocation of a business
method to the session bean instance.

The methods of the javax.ejb.EJBObject interface. These methods allow the client to:

Get the session object’s remote home interface.

Get the session object’s handle.

Test if the session object is identical with another session object.

Remove the session object.

A session EJBLocalObject supports:

The business logic methods of the object. The session EJBLocalObject delegates invocation of a business
method to the session bean instance.

The methods of the javax.ejb.EJBLocalObject interface. These methods allow the client to:

Get the session object’s local home interface.

Test if the session object is identical with another session object.

Remove the session object.

The implementation of the methods defined in the javax.ejb.EJBObject and javax.ejb.EJBLocalObject
interfaces is provided by the container. They are not delegated to the instances of the session bean
class.

3.6.5. Client view of Session Object’s Life Cycle

From the point of view of a local or remote client using the EJB 2.1 and earlier client view API, the life
cycle of a session object is illustrated below.

===

Life Cycle of a Session Object.

3.6. Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View API

38 Jakarta Enterprise Beans, Core Features DRAFT

A session object does not exist until it is created. When a client creates a session object, the client has a
reference to the newly created session object’s component interface.

3.6.5.1. References to Session Object Remote Component Interfaces

A client that has a reference to a session object’s remote component interface can then do any of the
following:

Invoke business methods defined in the session object’s remote component interface.

Get a reference to the session object’s remote home interface.

Get a handle for the session object.

Pass the reference as a parameter or return value within the scope of the client.

Remove the session object. A container may also remove the session object automatically when the
session object’s lifetime expires.

It is invalid to reference a session object that does not exist. Attempted remote invocations on a stateful
session object that does not exist result in a java.rmi.NoSuchObjectException.7

3.6.5.2. References to Session Object Local Component Interfaces

A client that has a reference to a session object’s local component interface can then do any of the
following:

Invoke business methods defined in the session object’s local component interface.

Get a reference to the session object’s local home interface.

Pass the reference as a parameter or return value of a local component interface method.

3.6. Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View API

DRAFT Jakarta Enterprise Beans, Core Features 39

#a10225

Remove the session object. A container may also remove the session object automatically when the
session object’s lifetime expires.

It is invalid to reference a session object that does not exist. Attempted invocations on a stateful session
object that does not exist result in javax.ejb.NoSuchObjectLocalException.8

A client can pass a local object reference or local home object reference to another application through
its local component interface. A local object reference or local home object reference cannot be passed
as an argument or result of a method on an enterprise bean’s remote home or remote component
interface.

3.6.6. Creating and Using a Session Object

An example of the session bean runtime objects is illustrated by the following diagram:

===

Session Bean Example Objects

A client creates a remote Cart session object, which provides a shopping service, using a
create<METHOD> method of the Cart ’s remote home interface. The client then uses this session object
to fill the cart with items and to purchase its contents.

Suppose that the end-user wishes to start the shopping session, suspend the shopping session
temporarily for a day or two, and later complete the session. The client might implement this feature
by getting the session object’s handle, saving the serialized handle in persistent storage, and using it
later to reestablish access to the original Cart .

For the following example, we start by looking up the Cart ’s remote home interface in JNDI. We then
use the remote home interface to create a Cart session object and add a few items to it:

CartHome cartHome = (CartHome)javax.rmi.PortableRemoteObject.narrow(

3.6. Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View API

40 Jakarta Enterprise Beans, Core Features DRAFT

#a10226

initialContext.lookup(...), CartHome.class);

Cart cart = cartHome.createLargeCart(…);

cart.addItem(66);

cart.addItem(22);

Next we decide to complete this shopping session at a later time so we serialize a handle to this cart
session object and store it in a file:

Handle cartHandle = cart.getHandle();

 // _serialize cartHandle, store in a
file..._

Finally we deserialize the handle at a later time, re-create the reference to the cart session object, and
purchase the contents of the shopping cart:

Handle cartHandle = …; // deserialize from a file…

Cart cart = (Cart)javax.rmi.PortableRemoteObject.narrow(

cartHandle.getEJBObject(), Cart.class);

cart.purchase();

cart.remove();

3.6.7. Object Identity

Session objects are intended to be private resources used only by the client that created them. For this
reason, session objects, from the client’s perspective, appear anonymous. Session objects do not expose
their identity as a primary key, on the opposite, they hide their identity. As a result, the
EJBObject.getPrimaryKey() method results in a java.rmi.RemoteException and the
EJBLocalObject.getPrimaryKey() method results in a javax.ejb.EJBException , and the
EJBHome.remove(Object primaryKey) and the EJBLocalHome.remove(Object primaryKey) methods result
in a javax.ejb.RemoveException if called on a session bean. If the EJBMetaData.getPrimaryKeyClass()
method is invoked on a EJBMetaData object for a session bean, the method throws the
java.lang.RuntimeException .Since all session objects hide their identity, there is no need to provide a
finder for them. The home interface of a session bean must not define any finder methods.

A session object handle can be held beyond the life of a client process by serializing the handle to
persistent storage. When the handle is later deserialized, the session object it returns will work as long

3.6. Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View API

DRAFT Jakarta Enterprise Beans, Core Features 41

as the session object still exists on the server. (An earlier timeout or server crash may have destroyed
the session object.)A handle is not a capability, in the security sense, that would automatically grant its
holder the right to invoke methods on the object. When a reference to a session object is obtained from
a handle, and then a method on the session object is invoked, the container performs the usual access
checks based on the caller’s principal.

3.6.7.1. Stateful Session Beans

A stateful session object has a unique identity that is assigned by the container at create time.

A remote client can determine if two remote object references refer to the same session object by
invoking the isIdentical(EJBObject otherEJBObject) method on one of the references. A local client can
determine if two local object references refer to the same session object by invoking the
isIdentical(EJBLocalObject otherEJBLocalObject) method.

The following example illustrates the use of the isIdentical method for a stateful session object.

FooHome fooHome = …; // obtain home of a stateful session bean

Foo foo1 = fooHome.create(…);

Foo foo2 = fooHome.create(…);

if (foo1.isIdentical(foo1)) \{ // this test must return true

...

}

if (foo1.isIdentical(foo2)) \{ // this test must return false

...

}

3.6.7.2. Stateless Session Beans

All session objects of the same stateless session bean within the same home have the same object
identity, which is assigned by the container. If a stateless session bean is deployed multiple times (each
deployment results in the creation of a distinct home), session objects from different homes will have a
different identity.

The isIdentical(EJBObject otherEJBObject) and isIdentical(EJBLocalObject otherEJBLocalObject) methods
always returns true when used to compare object references of two session objects of the same
stateless session bean.

3.6. Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View API

42 Jakarta Enterprise Beans, Core Features DRAFT

The following example illustrates the use of the isIdentical method for a stateless session object.

FooHome fooHome = …; // obtain home of a stateless session bean

Foo foo1 = fooHome.create();

Foo foo2 = fooHome.create();

if (foo1.isIdentical(foo1)) \{ // this test returns true

...

}

if (foo1.isIdentical(foo2)) \{ // this test returns true

...

}

3.6.7.3. getPrimaryKey()

The object identifier of a session object is, in general, opaque to the client. The result of
getPrimaryKey() on a session EJBObject reference results in java.rmi.RemoteException . The result of
getPrimaryKey() on a session EJBLocalObject reference results in javax.ejb.EJBException .

3.6.8. Type Narrowing

A client program that is intended to be interoperable with all compliant EJB container
implementations must use the javax.rmi.PortableRemoteObject.narrow method to perform type-
narrowing of the client-side representations of the remote home and remote component interfaces.9

Note: Programs using the cast operator for narrowing the remote component interface and remote
home interface are likely to fail if the container implementation uses RMI-IIOP as the underlying
communication transport.

3.6. Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View API

DRAFT Jakarta Enterprise Beans, Core Features 43

#a10227

Chapter 4. Session Bean Component Contract
This chapter specifies the contract between a session bean and its container. It defines the life cycle of
the session bean instances.

This chapter defines the developer’s view of session bean state management and the container’s
responsibilities for managing session bean state.

4.1. Overview
A session bean instance is an instance of the session bean class. It holds the session object’s state.

A session bean instance is an extension of the client that creates it:

In the case of a stateful session bean, its fields contain conversational state on behalf of the session
object’s client. This state describes the conversation represented by a specific client/session object pair.

It typically reads and updates data in a database on behalf of the client.

In the case of a stateful session bean, its lifetime is controlled by the client.

A container may also terminate a session bean instance’s life after a Deployer-specified timeout or as a
result of the failure of the server on which the bean instance is running. For this reason, a client should
be prepared to recreate a new session object if it loses the one it is using.

Typically, a session object’s conversational state is not written to the database. A session Bean Provider
simply stores it in the session bean instance’s fields and assumes its value is retained for the lifetime of
the instance. A developer may use an extended persistence context to store a stateful session bean’s
persistent conversational state. See the document “ Java Persistence API” specification See Java™
Persistence.

A session bean that does not make use of the Java Persistence API must explicitly manage cached
database data. A session bean instance must write any cached database updates prior to a transaction
completion, and it must refresh its copy of any potentially stale database data at the beginning of the
next transaction. A session bean must also refresh any java.sql Statement objects before they are used
in a new transaction context. Use of the Java Persistence API provides a session bean with automatic
management of database data, including the automatic flushing of cached database updates upon
transaction commit. See See Java™ Persistence API.

The container manages the life cycle of the session bean instances. It notifies the instances when bean
action may be necessary, and it provides a full range of services to ensure that the session bean
implementation is scalable and can support a large number of clients.

A session bean may be invoked either synchronously or asynchronously.

A session bean may be either:

4.1. Overview

44 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9851
Ejb.html#a9851
Ejb.html#a9851

 stateless —the session bean instances
contain no conversational state between methods; any instance can be
used for any client.

 stateful —the session bean instances
contain conversational state which must be retained across methods and
transactions.

singleton—a single session bean instance is shared between clients and supports concurrent access.

4.2. Conversational State of a Stateful Session Bean
The conversational state of a stateful session object is defined as the session bean instance’s field
values, its associated interceptors and their instance field values, plus the transitive closure of the
objects from these instances’ fields reached by following Java object references.

To efficiently manage the size of its working set, a session bean container may need to temporarily
transfer the state of an idle stateful session bean instance to some form of secondary storage. The
transfer from the working set to secondary storage is called instance passivation . The transfer back is
called activation .

In advanced cases, a session object’s conversational state may contain open resources, such as open
sockets and open database cursors. A container cannot retain such open resources when a session
bean instance is passivated. A developer of a stateful session bean must close and open the resources
in the PrePassivate and PostActivate lifecycle callback interceptor methods.10

A container may only passivate a stateful session bean instance when the instance is not in a
transaction.

A container must not passivate a stateful session bean that is designated as not passivation capable.
See section See Disabling Passivation of Stateful Session Beans on how to disable passivation of stateful
session beans.

A container must not passivate a stateful session bean with an extended persistence context unless the
following conditions are met:11

All the entities in the persistence context are serializable.

The EntityManager is serializable.

A stateless session bean is never passivated.

A singleton session bean is never passivated.

4.2. Conversational State of a Stateful Session Bean

DRAFT Jakarta Enterprise Beans, Core Features 45

#a10228
Ejb.html#a1053
#a10229

4.2.1. Instance Passivation and Conversational State

The Bean Provider is required to ensure that the PrePassivate method leaves the instance fields and
the fields of its associated interceptors ready to be serialized by the container. The objects that are
assigned to the instance’s non- transient fields and the non- transient fields of its interceptors after the
PrePassivate method completes must be one of the following.

A serializable object12.

A null .

A reference to an enterprise bean’s local or remote business interface.

A reference to an enterprise bean’s no-interface view.

A reference to an enterprise bean’s remote component interface, even if the stub class is not
serializable.

A reference to an enterprise bean’s remote home interface, even if the stub class is not serializable.

A reference to an entity bean’s13 local component interface, even if it is not serializable.

A reference to an entity bean’sSee Component contract and client view of entity beans are described in
the EJB Optional Features document [40.] local home interface, even if it is not serializable.

A reference to the SessionContext object, even if it is not serializable.

A reference to the environment naming context (that is, the java:comp/env JNDI context) or any of its
subcontexts.

A reference to the UserTransaction interface.

A reference to a resource manager connection factory14.

A reference to a container-managed EntityManager object, even if it is not serializable.

A reference to an EntityManagerFactory object obtained via injection or JNDI lookup, even if it is not
serializable.

A reference to a javax.ejb.Timer object.

An object that is not directly serializable, but becomes serializable by replacing the references to an
enterprise bean’s business interface, an enterprise bean’s home and component interfaces, the
references to the SessionContext object, the references to the java:comp/env JNDI context and its
subcontexts, the references to the UserTransaction interface, and the references to the EntityManager
and/or EntityManagerFactory by serializable objects during the object’s serialization.

This means, for example, that the Bean Provider must close all JDBC™ connections in the PrePassivate
method and assign the instance’s fields storing the connections to null .

4.2. Conversational State of a Stateful Session Bean

46 Jakarta Enterprise Beans, Core Features DRAFT

#a10230
#a10230
Ejb.html#a10231
Ejb.html#a10231
#a10232

The last bulleted item covers cases such as storing Collections of component interfaces in the
conversational state.

The Bean Provider must assume that the content of transient fields may be lost between the
PrePassivate and PostActivate notifications. Therefore, the Bean Provider should not store in a
transient field a reference to any of the following objects: SessionContext object; environment JNDI
naming context and any its subcontexts; business interfaces; home and component interfaces;
EntityManager interface; EntityManagerFactory interface; UserTransaction interface.

The restrictions on the use of transient fields ensure that containers can use Java Serialization during
passivation and activation.

The following are the requirements for the container.

The container performs the Java programming language Serialization (or its equivalent) of the
instance’s state (and its interceptors’ state) after it invokes the PrePassivate method on the instance
and its interceptors.

The container must be able to properly save and restore the reference to the business interfaces and
home and component interfaces of the enterprise beans stored in the instance’s state even if the
classes that implement the object references are not serializable.

The container may use, for example, the object replacement technique that is part of the
java.io.ObjectOutputStream and java.io.ObjectInputStream protocol to externalize the home and
component references.

The container must be able to properly save and restore references to timers stored in the instance’s
state even if the classes that implement the timers are not serializable.

If the session bean instance stores in its conversational state an object reference to the
javax.ejb.SessionContext interface, the container must be able to save and restore the reference across
the instance’s passivation. The container can replace the original SessionContext object with a different
and functionally equivalent SessionContext object during activation.

If the session bean instance stores in its conversational state an object reference to the java:comp/env
JNDI context or its subcontext, the container must be able to save and restore the object reference
across the instance’s passivation. The container can replace the original object with a different and
functionally equivalent object during activation.

If the session bean instance stores in its conversational state an object reference to the UserTransaction
interface, the container must be able to save and restore the object reference across the instance’s
passivation. The container can replace the original object with a different and functionally equivalent
object during activation.

If the session bean instance stores in its conversational state an object reference to a container-
managed EntityManager or to an EntityManagerFactory obtained via injection or JNDI lookup, the
container must be able to save and restore the object reference across the instance’s passivation.

4.2. Conversational State of a Stateful Session Bean

DRAFT Jakarta Enterprise Beans, Core Features 47

The container may destroy a session bean instance if the instance does not meet the requirements for
serialization after PrePassivate.

While the container is not required to use the Serialization protocol for the Java programming
language to store the state of a passivated session instance, it must achieve the equivalent result. The
one exception is that containers are not required to reset the value of transient fields during
activation15. Declaring the session bean’s fields as transient is, in general, discouraged.

4.2.2. The Effect of Transaction Rollback on Conversational State

A session object’s conversational state is not transactional. It is not automatically rolled back to its
initial state if the transaction in which the object has participated rolls back.

If a rollback could result in an inconsistency between a session object’s conversational state and the
state of the underlying database, the bean developer (or the application development tools used by the
developer) must use the afterCompletion notification to manually reset its state.

4.3. Protocol Between a Session Bean Instance and its
Container
Containers themselves make no actual service demands on the session bean instances. The container
makes calls on a bean instance to provide it with access to container services and to deliver
notifications issued by the container.

4.3.1. Required Session Bean Metadata

A session bean must be annotated or denoted in the deployment descriptor as a stateless, stateful, or
singleton session bean. A stateless session bean must be annotated with the Stateless annotation or
denoted in the deployment descriptor as a stateless session bean. A stateful session bean must be
annotated with the Stateful annotation or denoted in the deployment descriptor as a stateful session
bean. A singleton session bean must be annotated with the Singleton annotation or denoted in the
deployment descriptor as a singleton session bean. The Stateful , Singleton , and Stateless annotations
are component-defining annotations and are applied to the bean class.

4.3.2. Dependency Injection

A session bean may use dependency injection mechanisms to acquire references to resources or other
objects in its environment (see See Enterprise Bean Environment). If a session bean makes use of
dependency injection, the container injects these references after the bean instance is created, and
before any business methods are invoked on the bean instance. If a dependency on the SessionContext
is declared, or if the bean class implements the optional SessionBean interface (see Section See The
SessionBean Interface), the SessionContext is also injected at this time. If dependency injection fails, the
bean instance is discarded.

Under the EJB 3.x API, the bean class may acquire the SessionContext interface through dependency

4.3. Protocol Between a Session Bean Instance and its Container

48 Jakarta Enterprise Beans, Core Features DRAFT

#a10234
Ejb.html#a3613
Ejb.html#a722
Ejb.html#a722

injection without having to implement the SessionBean interface. In this case, the Resource annotation
(or resource-env-ref deployment descriptor element) is used to denote the bean’s dependency on the
SessionContext . See See Enterprise Bean Environment.

4.3.3. The SessionContext Interface

If the bean specifies a dependency on the SessionContext interface (or if the bean class implements the
SessionBean interface), the container must provide the session bean instance with a SessionContext
object. This gives the session bean instance access to the instance’s context maintained by the
container. The SessionContext interface has the following methods:

The getCallerPrincipal method returns the java.security.Principal that identifies the invoker.

The isCallerInRole method tests if the session bean instance’s caller has a particular role.

The setRollbackOnly method allows the instance to mark the current transaction such that the only
outcome of the transaction is a rollback. Only instances of a session bean with container-managed
transaction demarcation are permitted to use this method.

The getRollbackOnly method allows the instance to test if the current transaction has been marked for
rollback. Only instances of a session bean with container-managed transaction demarcation are
permitted to use this method.

The getUserTransaction method returns the javax.transaction.UserTransaction interface. The instance
can use this interface to demarcate transactions and to obtain transaction status. Only instances of a
session bean with bean-managed transaction demarcation are permitted to use this method.

The getTimerService method returns the javax.ejb.TimerService interface. Only stateless session beans
and singleton session beans are permitted to use this method. Stateful session beans cannot be timed
objects.

The getBusinessObject(Class businessInterface) method returns a business object reference to the
session bean’s business interface or no-interface view. In the case of the no-interface view, the
argument is of the type of the bean class. Only session beans with an EJB 3.x business interface or no-
interface view are permitted to call this method.

 If a subsequent invocation is made on the
result of _getBusinessObject_ , then:

For a stateless session bean, the invocation will be delivered to another stateless session bean instance.

For a stateful session bean or singleton session bean, the invocation will be delivered to the bean
instance that returned the reference. The existing rules regarding reentrancy would then apply.

The getInvokedBusinessInterface method returns the session bean business interface or no-interface
view (bean class) type through which the bean was invoked.

4.3. Protocol Between a Session Bean Instance and its Container

DRAFT Jakarta Enterprise Beans, Core Features 49

Ejb.html#a3613

The getEJBObject method returns the session bean’s remote component interface. Only session beans
with a remote EJBObject interface are permitted to call this method.

The getEJBHome method returns the session bean’s remote home interface. Only session beans with a
remote home interface are permitted to call this method.

The getEJBLocalObject method returns the session bean’s local component interface. Only session
beans with a local EJBLocalObject interface are permitted to call this method.

The getEJBLocalHome method returns the session bean’s local home interface. Only session beans with
a local home interface are permitted to call this method.

The lookup method enables the session bean to look up its environment entries in the JNDI naming
context.

The wasCancelCalled method enables an asynchronous session bean method to check whether the
client invoked its Future.cancel method. The SessionContext.wasCancelCalled method only returns true
if the cancel method was invoked on the client Future object corresponding to the currently executing
business method and the mayInterruptIfRunning parameter was set to true.

The getContextData method enables a business method, lifecycle callback method, or timeout method
to retrieve or update the interceptor and/or webservices context data associated with its invocation.

4.3.3.1. Use of the MessageContext Interface by Session Beans

A session bean that implements a web service endpoint using the JAX-WS contracts should use the JAX-
WS WebServiceContext , which can be injected by use of the Resource annotation. The
WebServiceContext interface allows the session bean instance to see the SOAP message for the web
service endpoint, as well as the properties set by the JAX-WS message handlers, if any. The session
bean may use the WebServiceContext interface to set properties for the JAX-WS message handlers, if
any. See See Java™ API for XML-based Web Service.

The javax.xml.ws.handler.MessageContext (See Java™ API for XML-based Web Service) is also
accessible to interceptors for session bean web service endpoints. See Section See InvocationContext.

4.3.4. Session Bean Lifecycle Callback Interceptor Methods

The following lifecycle event callbacks are supported for session beans. With the exception of
AroundConstruct lifecycle callback interceptors (see See Interceptors), all interceptor methods may be
defined directly on the bean class or on a separate interceptor class. See See Lifecycle Callback
Interceptor Methods and Chapter See Interceptors.

AroundConstruct

4.3. Protocol Between a Session Bean Instance and its Container

50 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9881
Ejb.html#a9881
Ejb.html#a2029
Ejb.html#a9887
Ejb.html#a1487
Ejb.html#a1487
Ejb.html#a2004

PostConstruct

PreDestroy

PostActivate

PrePassivate

The PostConstruct callback invocations occur before the first business method invocation on the bean
instance. This is at a point after which any dependency injection has been performed by the container.

The PostConstruct lifecycle callback interceptor methods execute in an unspecified security context.

The PostConstruct lifecycle callback interceptor methods for a stateless session bean execute in an
unspecified transaction context. The PostConstruct lifecycle callback interceptor methods for a
singleton session bean execute in a transaction context determined by the bean’s transaction
management type and any applicable transaction attribute. The PostConstruct lifecycle callback
interceptor methods for a stateful session bean execute in a transaction context determined by the
lifecycle callback method’s transaction attribute.

The PreDestroy callback notification signals that the instance is in the process of being removed by the
container. In the PreDestroy lifecycle callback interceptor methods, the instance typically releases the
resources that it has been holding.

The PreDestroy lifecycle callback interceptor methods execute in an unspecified security context.

The PreDestroy lifecycle callback interceptor methods for a stateless session bean execute in an
unspecified transaction context. The PreDestroy lifecycle callback interceptor methods for a singleton
session bean execute in a transaction context determined by the bean’s transaction management type
and any applicable transaction attribute. The PreDestroy lifecycle callback interceptor methods for a
stateful bean execute in a transaction context determined by the lifecycle callback method’s
transaction attribute.

The PrePassivate and PostActivate lifecycle callback interceptor methods are only called on a stateful
session bean instance if the bean is passivation capable. By default a stateful session bean is
passivation capable. See section See Disabling Passivation of Stateful Session Beans on how to disable
passivation of a stateful session bean.

The PrePassivate callback notification signals the intent of the container to passivate the instance. The
PostActivate notification signals the instance it has just been reactivated. Because containers
automatically maintain the conversational state of a stateful session bean instance when it is
passivated, these notifications are not needed for most session beans. Their purpose is to allow stateful

4.3. Protocol Between a Session Bean Instance and its Container

DRAFT Jakarta Enterprise Beans, Core Features 51

Ejb.html#a1053

session beans to maintain those open resources that need to be closed prior to an instance’s
passivation and then reopened during an instance’s activation.

The PrePassivate and PostActivate lifecycle callback interceptor methods execute in an unspecified
security context.

The PrePassivate and PostActivate lifecycle callback interceptor methods execute in a transaction
context determined by the lifecycle callback method’s transaction attribute.

4.3.5. The SessionBean Interface

The session bean class is not required to implement the SessionBean interface or the Serializable
interface. Interceptor classes for the bean are likewise not required to implement the Serializable
interface.

 _The SessionBean interface was required to
be implemented by the session bean class in earlier versions of the
Enterprise JavaBeans specification. Under the EJB 3.x API, the
functionality previously provided by the SessionBean interface is
available to the bean class through selective use of dependency
injection (of the SessionContext) and optional lifecycle callback
interceptor methods._

The SessionBean interface defines four methods: setSessionContext , ejbRemove , ejbPassivate , and
ejbActivate .

The setSessionContext method is called by the bean’s container to associate a session bean instance
with its context maintained by the container. Typically a session bean instance retains its session
context as part of its state.

The ejbRemove notification signals that the instance is in the process of being removed by the
container. In the ejbRemove method, the instance typically releases the same resources that it releases
in the ejbPassivate method.

Under the EJB 3.x API, the bean class may optionally define a PreDestroy lifecycle callback interceptor
method for notification of the container’s removal of the bean instance.

The ejbPassivate notification signals the intent of the container to passivate the instance. The
ejbActivate notification signals the instance it has just been reactivated. Their purpose is to allow
stateful session beans to maintain those open resources that need to be closed prior to an instance’s
passivation and then reopened during an instance’s activation. The ejbPassivate and ejbActivate
methods are only called on stateful session bean instances.

Under the EJB 3.x API, the bean class may optionally define PrePassivate and/or PostActivate lifecycle
callback interceptor methods for notification of the passivation/activation of the bean instance.

4.3. Protocol Between a Session Bean Instance and its Container

52 Jakarta Enterprise Beans, Core Features DRAFT

This specification requires that the ejbRemove , ejbActivate , and ejbPassivate methods of the
SessionBean interface, and the ejbCreate method of a stateless session bean be treated as PreDestroy ,
PostActivate , PrePassivate and PostConstruct life cycle callback interceptor methods, respectively.

If the session bean implements the SessionBean interface, the PreDestroy annotation on the bean class
can only be applied to the ejbRemove method; the PostActivate annotation can only be applied to the
ejbActivate method; the PrePassivate annotation can only be applied to the ejbPassivate method.
Similar requirements apply to use of deployment descriptor metadata as an alternative to the use of
annotations.

4.3.6. The Session Synchronization Notifications for Stateful Session Beans

A stateful session bean class can optionally implement the javax.ejb. SessionSynchronization interface
or annotate methods using the individual AfterBegin, BeforeCompletion, and AfterCompletion
annotations. The deployment descriptor may also be used to declare the individual session
synchronization methods. These provide the session bean instances with transaction synchronization
notifications. The instances can use these notifications, for example, to manage database data they may
cache within transactions—e.g., if the Java Persistence API is not used. A stateful session bean class
may use either the javax.ejb.SessionSynchronization interface or the session synchronization
annotations, but not both. If annotation are used, there must be at most one AfterBegin method, one
BeforeCompletion method, and one AfterCompletion method for the bean.

The afterBegin notification signals a session bean instance that a new transaction has begun. The
container invokes this method before the first business method within a transaction (which is not
necessarily at the beginning of the transaction). The afterBegin notification is invoked with the
transaction context. The instance may do any database work it requires within the scope of the
transaction.

The beforeCompletion notification is issued when a session bean instance’s client has completed work
on its current transaction but prior to committing the resource managers used by the instance. At this
time, the instance should write out any database updates it has cached. The instance can cause the
transaction to roll back by invoking the setRollbackOnly method on its SessionContext object.

The afterCompletion notification signals that the current transaction has completed. A completion
status of true indicates that the transaction has committed. A status of false indicates that a rollback
has occurred. Since a session bean instance’s conversational state is not transactional, it may need to
manually reset its state if a rollback occurred.

All Container Providers must support the _ session synchronization notifications. If a bean class
implements the _SessionSynchronization interface, the container must invoke the afterBegin ,
beforeCompletion , and afterCompletion notifications as required by the specification. If the bean
implementor uses the session synchronization annotations, the container must invoke only the
notifications corresponding to the annotations that have been used.

If a stateful session bean’s PostConstruct, PreDestroy, PrePassivate or PostActivate lifecycle callback
interceptor method is invoked in the scope of a transaction, session synchronization callbacks for the

4.3. Protocol Between a Session Bean Instance and its Container

DRAFT Jakarta Enterprise Beans, Core Features 53

transaction are not called on the bean instance.

A session synchronization method can have public, private, protected, or package level access. A
session synchronization method must not be declared as final or static .

Only a stateful session bean with container-managed transaction demarcation can receive session
synchronization notifications. Stateless session beans and singleton session beans must not implement
the SessionSynchronization interface or use the session synchronization annotations.

There is no need for a session bean with bean-managed transaction demarcation to rely on the
synchronization call backs because the bean is in control of the commit—the bean knows when the
transaction is about to be committed and it knows the outcome of the transaction commit.

4.3.7. Timeout Callbacks for Stateless and Singleton Session Beans

A stateless session bean or singleton session bean can be registered with the EJB Timer Service for
time-based event notifications. The container invokes the appropriate bean instance timeout callback
method when a timer for the bean has expired. See See Timer Service. Stateful session beans cannot be
registered with the EJB Timer Service, and therefore should not implement timeout callback methods.

4.3.8. Business Method Delegation

The session bean’s business interface, no-interface view, component interface, or web service endpoint
defines the business methods callable by a client.

The container classes that implement these are generated by the container tools. The class that
implements the session bean’s business interface and the class that implements the session bean’s no-
interface view and the class that implements a session bean’s component interface delegate an
invocation of a business method to the matching business method that is implemented in the session
bean class. The class that handles requests to the web service endpoint invokes the session bean
method that matches the web service method corresponding to the SOAP request.

4.3.9. Session Bean Creation

Except as noted below, the container creates an instance of a session bean as follows. First, the
container calls the bean class constructor to create a new session bean instance. Second, the container
performs any dependency injection as specified by metadata annotations on the bean class or by the
deployment descriptor. This includes the bean’s SessionContext, if applicable. Third, the container calls
the PostConstruct lifecycle callback interceptor methods for the bean, if any. The additional steps
described below in sections See Stateful Session Beans and See Stateless Session Beans apply if the
session bean is invoked through the EJB 2.1 client view APIs.

If an interceptor associated with the session bean declares an AroundConstruct lifecycle callback
interceptor method, the container follows the rules for the AroundConstruct interceptors defined in the
Interceptors specification See Interceptors.

4.3. Protocol Between a Session Bean Instance and its Container

54 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a5456
Ejb.html#a759
Ejb.html#a762
Ejb.html#a9887

4.3.9.1. Stateful Session Beans

If the bean is a stateful session bean and the client has used one of the create<METHOD> methods
defined in the session bean’s home or local home interface to create the bean, the container then calls
the instance’s initialization method whose signature matches the signature of the create<METHOD>
invoked by the client, passing to the method the input parameters sent from the client. If the bean class
is written to the EJB 3.x API, and has been adapted for use with an earlier client view, this initialization
method is a matching Init method, as designated by use of the Init annotation, or init-method
deployment descriptor element16. If the bean class was written to the EJB 2.1 or earlier API, this
initialization method is a matching ejbCreate<METHOD> method, as described in See
ejbCreate<METHOD> Methods.

Each stateful session bean class that has a home interface must have at least one such initialization
method. The number and signatures of a session bean’s initialization methods are specific to each
session bean class. Since a stateful session bean represents a specific, private conversation between the
bean and its client, its initialization parameters typically contain the information the client uses to
customize the bean instance for its use.

4.3.9.2. Stateless Session Beans

A stateless session bean that has an EJB 2.1 local or remote client view has a single create method on its
home interface. In this case, EJB 2.1 required the stateless session bean class to have a single no-arg
ejbCreate method. Under the EJB 3.x API, it is not required that a stateless session bean have an
ejbCreate method, even when it has a home interface. An EJB 3.x stateless session bean class may have
a PostConstruct method, as described in Section See Session Bean Lifecycle Callback Interceptor
Methods.

If the stateless session bean instance has an ejbCreate method, the container treats the ejbCreate
method as the instance’s PostConstruct method, and, in this case, the PostConstruct annotation (or
deployment descriptor metadata) can only be applied to the bean’s ejbCreate method.

Since stateless session bean instances are typically pooled, the time of the client’s invocation of the
create method need not have any direct relationship to the container’s invocation of the PostConstruct
/ ejbCreate method on the stateless session bean instance.

A stateless session bean that provides only a web service client view has no create method. If the
ejbCreate method required by EJB 2.1 is present, it is treated by the container as the instance’s
PostConstruct method, and is invoked when the container needs to create a new session bean instance
in order to service a client request.

4.3.10. Stateful Session Bean Removal

A stateful session bean written to the EJB 3.x API typically has one or more remove methods
designated by means of the Remove annotation or remove-method deployment descriptor element.17
Invocation of the remove method causes the removal of the stateful session bean after the remove
method successfully completes. If the Remove annotation specifies the value of retainIfException as

4.3. Protocol Between a Session Bean Instance and its Container

DRAFT Jakarta Enterprise Beans, Core Features 55

#a10235
Ejb.html#a1498
Ejb.html#a1498
Ejb.html#a705
Ejb.html#a705
#a10236

true and the invocation of the Remove method throws an application exception, the instance is not
removed. The retain-if-exception subelement of the remove-method deployment descriptor element
may be explicitly specified to override the retainIfException value specified or defaulted by the Remove
annotation. The default value of the retainIfException element is false . If there are multiple remove
methods, their retainIfException values can differ.

4.3.11. Stateful Session Bean Timeout

A Bean Provider or Deployer may optionally assign a timeout value to a stateful session bean. The
stateful session bean timeout is specified using the StatefulTimeout annotation on the bean class. It
may also be specified using the stateful-timeout deployment descriptor element. If both are specified,
the deployment descriptor value overrides that of the annotation.

The timeout value is the amount of time a stateful session bean instance is permitted to remain idle
(not receive any client invocations) before being removed by the container. A timeout value of -1
indicates that the bean must not be removed due to timeout for as long as the application is deployed.
A timeout value of 0 indicates that the bean is immediately eligible for removal after becoming idle.

If a stateful session bean timeout is not designated using this standard metadata, the container
determines when to end the lifetime of the bean, possibly based on vendor-specific configuration. The
details of such configuration are beyond the scope of the specification.

A stateful session bean instance must not be removed due to timeout while it is associated with a
transaction or while it is processing a business method or callback. The full stateful session bean life
cycle is covered in See Stateful Session Beans.

4.3.12. Business Method Interceptor Methods for Session Beans

The AroundInvoke interceptor methods are supported for session beans. These interceptor methods
may be defined on the bean class and/or on interceptor classes, and apply to the handling of the
invocation of the business methods of the bean’s business interface, no-interface view, component
interface, and/or web service endpoint.

For stateful session beans that use the session synchronization notifications, the afterBegin notification
occurs before any AroundInvoke method invocations, and the beforeCompletion notification occurs
after all AroundInvoke invocations have finished.

Interceptors are described in See Interceptors.

4.3.13. Serializing Session Bean Methods

The following requirements apply to stateless and stateful session beans. See section See Singleton
Session Bean Concurrency for singleton session bean concurrency requirements.

The container serializes calls to each stateful and stateless session bean instance. Most containers will
support many instances of a session bean executing concurrently; however, each instance sees only a

4.3. Protocol Between a Session Bean Instance and its Container

56 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a921
Ejb.html#a2004
Ejb.html#a1257
Ejb.html#a1257

serialized sequence of method calls. Therefore, a stateful or stateless session bean does not have to be
coded as reentrant.

The container must serialize all the container-invoked callbacks (that is, the business method
interceptor methods, lifecycle callback interceptor methods, timeout callback methods,
beforeCompletion methods, and so on), and it must serialize these callbacks with the client-invoked
business method calls.

By default, clients are allowed to make concurrent calls to a stateful session object and the container is
required to serialize such concurrent requests. Note that the container never permits multi-threaded
access to the actual stateful session bean instance. For this reason, Read/Write method locking
metadata, as well as the bean-managed concurrency mode, are not applicable to stateful session beans
and must not be used18. See See Singleton Session Bean Concurrency for a description of how these
concurrency modes and locking types apply to singleton session beans.

The Bean Provider may optionally specify that concurrent client requests to a stateful session bean are
prohibited. This is done using the AccessTimeout annotation or the access-timeout deployment
descriptor element with a value of 0. In this case, if a client-invoked business method is in progress on
an instance when another client-invoked call, from the same or different client, arrives at the same
stateful session bean istance, if the second client is a client of the bean’s business interface or no-
interface view, the concurrent invocation must result in the second client receiving the
javax.ejb.ConcurrentAccessException19 . If the EJB 2.1 client view is used, the container must throw the
java.rmi.RemoteException if the second client is a remote client, or the javax.ejb.EJBException if the
second client is a local client.

There is no need for any restrictions against concurrent client access to stateless session beans because
the container routes each request to a different instance of the stateless session bean class.

4.3.13.1. Stateful Session Bean Concurrent Access Timeouts

The AccessTimeout annotation is used to specify the amount of time a stateful session bean request
should block in the case that it cannot immediately access a bean instance that is already processing a
different request. If an access attempt times out, the container throws the
javax.ejb.ConcurrentAccessTimeoutException to the client.

The AccessTimeout annotation can be specified on a business method or on the bean class (or
superclass). The AccessTimeout annotation specified on a class applies the access timeout to all
business methods of that class. If the AccessTimeout annotation is specified on both the class and on a
business method of that class, the method-level annotation takes precedence.

An AccessTimeout value of -1 indicates that a concurrent client request will block indefinitely until it
can proceed.

4.3.14. Transaction Context of Session Bean Methods

The following session bean methods are invoked in the scope of a transaction determined by the

4.3. Protocol Between a Session Bean Instance and its Container

DRAFT Jakarta Enterprise Beans, Core Features 57

#a10237
Ejb.html#a1257
#a10238

transaction attribute specified in the bean’s metadata annotations or deployment descriptor.

An implementation of a method defined in a session bean’s business interface or component interface
or no-interface view.

A web service method.

A timeout callback method

A singleton session bean’s PostConstruct or PreDestroy lifecycle callback interceptor method.

A stateful session bean’s PostConstruct, PreDestroy, PrePassivate or PostActivate lifecycle callback
interceptor method is invoked in the scope of a transaction determined by the transaction attribute
specified in the lifecycle callback method’s metadata annotations or deployment descriptor.

A stateful session bean’s afterBegin and beforeCompletion methods are always called with the same
transaction context as the business methods executed between the afterBegin and beforeCompletion
methods.

A session bean’s constructor , setSessionContext , other dependency injection methods, other life cycle
callback interceptor methods, and afterCompletion methods are called with an unspecified transaction
context. Refer to section See Handling of Methods that Run with “an unspecified transaction context”
for how the container executes methods with an unspecified transaction context.

If database operations are performed within a stateful session bean’s PostConstruct , PreDestroy ,
PrePassivate or PostActivate lifecycle callback interceptor methods these operations will not be part of
the client’s transaction. If such a transaction is rolled back, the instance is discarded. See section See
Dealing with Exceptions for rules on dealing with exceptions in stateful session beans.

4.4. Access in the Global JNDI Namespace
The Java EE Platform Specification defines a standardized global JNDI namespace and a series of
related namespaces that map to the various scopes of a Java EE application. These namespaces can be
used by applications to portably retrieve references to components and resources. This specification
defines the JNDI names by which session beans are required to be registered within these namespaces.

4.4.1. Syntax

Each portable session bean global JNDI name has the following syntax:

java:global[/<app-name>]/<module-name>/<bean-name>[!<fully-qualified-interface-name>]

<app-name> only applies if the session bean is packaged within an .ear file. It defaults to the base
name of the .ear file with no filename extension, unless specified by the application.xml deployment
descriptor.

<module-name> is the name of the module in which the session bean is packaged. In a stand-alone ejb-

4.4. Access in the Global JNDI Namespace

58 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a2889
Ejb.html#a1041
Ejb.html#a1041

jar file or .war file, <module-name> defaults to the base name of the module with any filename
extension removed. In an ear file, the <module-name> defaults to the pathname of the module with
any filename extension removed, but with any directory names included. The default module name
can be overridden using the module-name element of ejb-jar.xml file (for ejb-jar files) or web.xml file
(for .war files).

<bean-name> is the ejb-name of the enterprise bean. For enterprise beans defined via annotations, it
defaults to the unqualified name of the session bean class, unless otherwise specified by the name
element of the Stateless, Stateful, or Singleton annotation. For enterprise beans defined via the ejb-
jar.xml file, it is specified in the ejb-name deployment descriptor element.

The container registers a separate JNDI name entry for each local business interface, each remote
business interface, any no-interface view, any local home interface, and any remote home interface.
For the no-interface view, the last portion of the entry name is the fully-qualified name of the bean
class.

In addition to the previous requirements, if the bean exposes only one of the applicable client
interfaces (or, alternatively has only a no-interface view), the container registers an entry for that view
with the following syntax:

java:global[/<app-name>]/<module-name>/<bean-name>

The container is also required to make session bean JNDI names available through the java:app and
java:module namespaces. 20

4.4.1.1. java:app

The java:app prefix allows a component executing within a Java EE application to access an
application-specific namespace. The resulting syntax is:

java:app/<module-name>/<bean-name>[!<fully-qualified-interface-name>]

Note that <module-name> is a required part of the syntax, even for names based on session bean
components packaged within a stand-alone module.

4.4.1.2. java:module

The java: module prefix allows a component executing within a Java EE application to access a module-
specific namespace. The resulting syntax is:

java:module/<bean-name>[!<fully-qualified-interface-name>]

4.4.2. Examples

The following examples show the resulting global JNDI names for various session beans.

4.4. Access in the Global JNDI Namespace

DRAFT Jakarta Enterprise Beans, Core Features 59

#a10239

4.4.2.1. Session bean exposing a single local business interface

package com.acme;

@Stateless

public class FooBean implements Foo \{ … }

If FooBean is packaged in fooejb.jar without a deployment descriptor and deployed as a stand-alone
module, the resulting JNDI name entries are:

java:global/fooejb/FooBean

java:global/fooejb/FooBean!com.acme.Foo

java:app/fooejb/FooBean

java:app/fooejb/FooBean!com.acme.Foo

java:module/FooBean

java:module/FooBean!com.acme.Foo

If FooBean is packaged in fooejb.jar within fooapp.ear, without the use of any deployment descriptors,
the resulting global JNDI name entries are:

java:global/fooapp/fooejb/FooBean

java:global/fooapp/fooejb/FooBean!com.acme.Foo

java:app/fooejb/FooBean

java:app/fooejb/FooBean!com.acme.Foo

java:module/FooBean

java:module/FooBean!com.acme.Foo

If FooBean is packaged in a stand-alone fooweb.war file, without the use of any deployment
descriptors, the resulting global JNDI name entries are:

java:global/fooweb/FooBean

java:global/fooweb/FooBean!com.acme.Foo

java:app/fooweb/FooBean

java:app/fooweb/FooBean!com.acme.Foo

java:module/FooBean

4.4. Access in the Global JNDI Namespace

60 Jakarta Enterprise Beans, Core Features DRAFT

java:module/FooBean!com.acme.Foo

If FooBean is packaged in fooweb.war within fooapp.ear, without the use of any deployment
descriptors, the resulting global JNDI name entries are:

java:global/fooapp/fooweb/FooBean

java:global/fooapp/fooweb/FooBean!com.acme.Foo

java:app/fooweb/FooBean

java:app/fooweb/FooBean!com.acme.Foo

java:module/FooBean

java:module/FooBean!com.acme.Foo

4.4.2.2. Session bean exposing multiple client views

package com.acme;

@Singleton(name="Shared")

@LocalBean

@Remote(com.acme.SharedRemote.class)

public class SharedBean \{ … }

If SharedBean is packaged in shared.jar without a deployment descriptor and deployed as a stand-
alone module, the resulting global JNDI name entries are:

java:global/shared/Shared!com.acme.SharedBean

java:global/shared/Shared!com.acme.SharedRemote

java:app/shared/Shared!com.acme.SharedBean

java:app/shared/Shared!com.acme.SharedRemote

java:module/Shared!com.acme.SharedBean

java:module/Shared!com.acme.SharedRemote

4.5. Asynchronous Methods
A session bean can expose methods with asynchronous client invocation semantics. For asynchronous
invocations, control returns to the client before the container dispatches the invocation to a bean
instance. An asynchronous method is a business method exposed through one or more of the remote

4.5. Asynchronous Methods

DRAFT Jakarta Enterprise Beans, Core Features 61

business, local business, or no-interface session bean views.

Asynchronous methods can return a Future<V> object that allows the client to retrieve a result value,
check for exceptions, or attempt to cancel an in-progress invocation.

4.5.1. Metadata

The Asynchronous annotation is used to designate which business methods are asynchronous.

The Asynchronous annotation can be applied to a particular business method of a bean class (or
superclass), or to the bean class (or superclass). If the Asynchronous annotation is applied at the class
level, all business methods declared on that specific class are asynchronous.

Asynchronous methods can also be designated via the deployment descriptor.

Asynchronous method invocation semantics only apply to the no-interface, local business, and remote
business client views. Support for asynchronous business methods exposed through the local
component, remote component, and web service client views is not required by this specification, and
applications which expose such views with asynchronous methods will not be portable.

4.5.2. Method Requirements

The valid return type of an asynchronous method is either void or java.util.concurrent.Future<V>,
where V is the result value type.

An asynchronous method with return type void must not declare any application exceptions. An
asynchronous method with return type Future<V> is permitted to declare application exceptions.

4.5.2.1. Return Values

The Bean Provider makes the result value of an asynchronous invocation available to the client by
returning a Future<V> object for which both get() methods return the result value. A concrete
Future<V> implemention called javax.ejb.AsyncResult<V> is provided by the container as a
convenience. The AsyncResult<V> class has a constructor that takes the result value as a parameter.

Example:

@Asynchronous

public Future<Integer> performCalculation(…) \{

// ... do calculation

Integer result = ...;

4.5. Asynchronous Methods

62 Jakarta Enterprise Beans, Core Features DRAFT

return new AsyncResult<Integer>(result);

}

Note that the Future<V> object returned from the bean class method (including any instance of
AsyncResult<V>) is only used as a way to pass the result value to the container. This object is not given
directly to the caller, since by definition the caller already has a container-generated Future<V> object
that was returned from the original invocation.

4.5.2.2. Method cancellation

A client can request that an asynchronous invocation be cancelled by calling the
Future<V>.cancel(boolean mayInterruptIfRunning) method. The Bean Provider can check whether the
client has requested cancellation by calling the SessionContext.wasCancelCalled() method within the
context of the asynchronous method. See See Asynchronous Invocations for the description of the
client Future contract.

4.5.3. Transactions

The client’s transaction context does not propagate with an asynchronous method invocation. From
the Bean Provider’s point of view, there is never a transaction context flowing in from the client. This
means, for example, that the semantics of the REQUIRED transaction attribute on an asynchronous
method are exactly the same as REQUIRES_NEW.

4.5.4. Security

The caller security principal propagates with an asynchronous method invocation. Caller security
principal propagation behaves exactly the same for asynchronous method invocations as it does for
synchronous session bean invocations.

4.5.5. Client Exception Behavior

Client exception behavior depends on whether the asynchronous method has return type void or
Future<V>.

If the asynchronous method has return type void, then once control has returned from the client’s
method call no exceptions occurring during the processing of the invocation will be delivered to the
client. For this reason, asynchronous methods with return type void must not declare application
exceptions.

If the asynchronous method has return type Future<V>, an exception thrown from the processing of
the asynchronous method invocation is accessible to the client via the getCause() method of a
java.util.concurrent.ExecutionException thrown from either Future.get() method.

4.5. Asynchronous Methods

DRAFT Jakarta Enterprise Beans, Core Features 63

Ejb.html#a387

4.6. Stateful Session Beans

4.6.1. Stateful Session Bean Lifecycle State Diagram

The following figure illustrates the life cycle of a stateful session bean instance.

===

Life Cycle of a Stateful Session Bean Instance

The following steps describe the life cycle of a stateful session bean instance:

A session bean instance’s life starts when a client obtains a reference to a stateful session bean
instance through dependency injection or JNDI lookup, or when the client invokes a create<METHOD>
method on the session bean’s home interface. This causes the container to invoke the session bean
class constructor to create a new session bean instance21. Next, the container performs any
dependency injection as specified by metadata annotations on the bean class or by the deployment
descriptor. The container then calls the PostConstruct lifecycle callback interceptor method(s) for the
bean, if any. Finally, if the session bean was written to the EJB 2.1 client view, the container invokes the
matching ejbCreate<METHOD> or Init method on the instance. The container then returns the session

4.6. Stateful Session Beans

64 Jakarta Enterprise Beans, Core Features DRAFT

#a10240

object reference to the client. The instance is now in the method ready state.

 _NOTE: When a stateful session bean is
looked up or otherwise obtained through the explicit JNDI lookup
mechanisms, the container must provide a new stateful session bean
instance, as required by the Java EE specification (Section “Java Naming
and Directory Interface (JNDI) Naming Context”
link:Ejb.html#a9854[See Java™ Naming and Directory Interface 1.2
Specification (JNDI).
http://docs.oracle.com/javase/7/docs/technotes/guides/jndi/index.html.])._

The session bean instance is now ready for client’s business methods. Based on the transaction
attributes in the session bean’s metadata annotations and/or deployment descriptor and the
transaction context associated with the client’s invocation, a business method is executed either in a
transaction context or with an unspecified transaction context (shown as “tx method” and “non-tx
method” in the diagram). See See Support for Transactions for how the container deals with
transactions.

A non-transactional method is executed while the instance is in the method ready state.

An invocation of a transactional method causes the instance to be included in a transaction. When the
session bean instance is included in a transaction, the container issues the afterBegin method on it if
the session bean has an afterBegin callback method22. The afterBegin method is invoked on the
instance before any business method or business method interceptor method is executed as part of the
transaction. The instance becomes associated with the transaction and will remain associated with the
transaction until the transaction completes.

Session bean methods invoked by the client in this transaction can now be delegated to the bean
instance. An error occurs if a client attempts to invoke a method on the session object and the bean’s
metadata annotations and/or deployment descriptor for the method requires that the container invoke
the method in a different transaction context than the one with which the instance is currently
associated or in an unspecified transaction context.

If a transaction commit has been requested, the transaction service notifies the container of the
commit request before actually committing the transaction, and the container issues the befor
eCompletion callback on the instance if the session bean has a beforeCompletion callback methodSee If
a stateful session bean lifecycle callback interceptor method is invoked in the scope of a transaction,
session synchronization callbacks for such transactions are not called on the bean instance — see
section 8.6.2.1.. When beforeCompletion is invoked, the instance should write any cached updates to the
database23. If a transaction rollback had been requested instead, the rollback status is reached without
the container issuing a beforeCompletion . The container may not call the beforeCompletion method if
the transaction has been marked for rollback (nor does the instance write any cached updates to the
database).

The transaction service then attempts to commit the transaction, resulting in either a commit or

4.6. Stateful Session Beans

DRAFT Jakarta Enterprise Beans, Core Features 65

Ejb.html#a2172
#a10241
Ejb.html#a10241
Ejb.html#a10241
Ejb.html#a10241
Ejb.html#a10241
#a10242

rollback.

When the transaction completes, the container issues afterCompletion on the instance if the session
bean has an afterCompletion callback methodSee If a stateful session bean lifecycle callback
interceptor method is invoked in the scope of a transaction, session synchronization callbacks for such
transactions are not called on the bean instance — see section 8.6.2.1., specifying the status of the
completion (either commit or rollback). If a rollback occurred, the bean instance may need to reset its
conversational state back to the value it had at the beginning of the transaction.

The container’s caching algorithm may decide that the bean instance should be evicted from memory.
(This could be done at the end of each method, or by using an LRU policy). The container invokes the
PrePassivate lifecycle callback interceptor method(s) for the bean instance, if any. After this completes,
the container saves the instance’s state to secondary storage. A session bean can be passivated only
between transactions, and not within a transaction.

While the instance is in the passivated state, the container may remove the session object after the
expiration of a timeout specified by the Deployer. All object references and handles for the session
object become invalid. If a client attempts to invoke a method on the bean’s business interface, the
container will throw the javax.ejb.NoSuchEJBException24 . If the EJB 2.1 client view is used, the
container will throw the java.rmi.NoSuchObjectException if the client is a remote client, or the
javax.ejb.NoSuchObjectLocalException if the client is a local client.

If a client invokes a session object whose session bean instance has been passivated, the container will
activate the instance. To activate the session bean instance, the container restores the instance’s state
from secondary storage and invokes the PostActivate method for the instance, if any.

The session bean instance is again ready for client methods.

When the client calls a business method of the bean that has been designated as a Remove method on
the bean class or a remove method on the home or component interface, the container invokes
PreDestroy lifecycle callback interceptor methods, if any, for the bean instance after the Remove
method completes.25 This ends the life of the session bean instance and the associated session object. If
a client subsequently attempts to invoke a method on the bean’s business interface, the container will
throw the javax.ejb.NoSuchEJBException26 . If the EJB 2.1 client view is used, any subsequent attempt
causes the java.rmi.NoSuchObjectException to be thrown if the client is a remote client, or the
javax.ejb.NoSuchObjectLocalException if the client is a local client. (The java.rmi.NoSuchObjectException
is a subclass of the java.rmi.RemoteException ; the javax.ejb.NoSuchObjectLocalException is a subclass
of the javax.ejb.EJBException). If the Remove method completes successfully or if the Remove method
throws an application exception for which retainIfException is not true or if a system exception is
thrown, session synchronization methods are not called on the bean instance. If an application
exception is thrown for which retainIfException is true , the bean is neither destroyed nor discarded,
and session synchronization methods, if any, are called on the instance at the end of transaction . A
container can also invoke the PreDestroy method on the instance without a client call to remove the
session object:

After the lifetime of the EJB object has expired

4.6. Stateful Session Beans

66 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a10241
Ejb.html#a10241
Ejb.html#a10241
#a10243
#a10244
#a10245

When the CDI context, to which the EJB object belongs to, is destroyed.

The container must call the afterBegin, beforeCompletion, and afterCompletion methods if the session
bean class implements, directly or indirectly, the SessionSynchronization interface, or if the bean class
uses the session synchronization annotations.

4.6.2. Operations Allowed in the Methods of a Stateful Session Bean Class

Table See Operations Allowed in the Methods of a Stateful Session Bean defines the methods of a
stateful session bean class from which the session bean instances can access the methods of the
javax.ejb.SessionContext interface, the java:comp/env environment naming context, resource
managers, Timer methods, the EntityManager and EntityManagerFactory methods, and other
enterprise beans.

If a session bean instance attempts to invoke a method of the SessionContext interface, and that access
is not allowed in Table See Operations Allowed in the Methods of a Stateful Session Bean, the container
must throw the java.lang.IllegalStateException.

If a session bean instance attempts to access a resource manager, an enterprise bean, an entity
manager or entity manager factory, and that access is not allowed in Table See Operations Allowed in
the Methods of a Stateful Session Bean, the behavior is undefined by the EJB architecture.

If a session bean instance attempts to invoke a method of the Timer interface and the access is not
allowed in Table See Operations Allowed in the Methods of a Stateful Session Bean, the container must
throw the java.lang.IllegalStateException .

===

Operations Allowed in the Methods of a Stateful Session Bean

Bean method

Bean method can perform the following operations

Container-managed transaction demarcation

Bean-managed transaction demarcation

constructor

-

-

dependency injection methods (e.g., setSessionContext)

SessionContext methods: getEJBHome, getEJBLocalHome, lookup

4.6. Stateful Session Beans

DRAFT Jakarta Enterprise Beans, Core Features 67

Ejb.html#a953
Ejb.html#a953
Ejb.html#a953
Ejb.html#a953
Ejb.html#a953

JNDI access to java:comp/env

SessionContext methods: getEJBHome, getEJBLocalHome, lookup

JNDI access to java:comp/env

PostConstruct, PreDestroy, PrePassivate, PostActivate lifecycle callback interceptor methods27

SessionContext methods: getBusinessObject , getEJBHome, getEJBLocalHome , getRollbackOnly,
setRollbackOnly, getCallerPrincipal, isCallerInRole, getEJBObject, getEJBLocalObject, lookup,
getContextData

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

SessionContext methods: getBusinessObject , getEJBHome, getEJBLocalHome , getCallerPrincipal,
isCallerInRole, getEJBObject, getEJBLocalObject, getUserTransaction, lookup, getContextData

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

business method

from business interface or from no-interface view or from component interface;

business method interceptor method

SessionContext methods: getBusinessObject , getEJBHome, getEJBLocalHome , getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly, getEJBObject, getEJBLocalObject,
getInvokedBusinessInterface, wasCancelCalled, lookup, getContextData

JNDI access to java:comp/env

Resource manager access

4.6. Stateful Session Beans

68 Jakarta Enterprise Beans, Core Features DRAFT

#a10246

Enterprise bean access

EntityManagerFactory access

EntityManager access

Timer methods

SessionContext methods: getBusinessObject , getEJBHome, getEJBLocalHome , getCallerPrincipal,
isCallerInRole, getEJBObject, getEJBLocalObject, getInvokedBusinessInterface, wasCancelCalled,
getUserTransaction, lookup, getContextData

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

Timer methods

afterBegin

beforeCompletion

SessionContext methods: getBusinessObject , getEJBHome, getEJBLocalHome, getCallerPrincipal,
getRollbackOnly, isCallerInRole, setRollbackOnly, getEJBObject, getEJBLocalObject, lookup,
getContextData

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

Timer methods

N/A

(a bean with bean-managed transaction demarcation cannot implement the SessionSynchronization
interface or use the session synchronization annotations)

4.6. Stateful Session Beans

DRAFT Jakarta Enterprise Beans, Core Features 69

afterCompletion

SessionContext methods: getBusinessObject , getEJBHome, getEJBLocalHome, getCallerPrincipal,
isCallerInRole, getEJBObject, getEJBLocalObject, lookup, getContextData

JNDI access to java:comp/env

Notes:

The PostConstruct , PreDestroy , PrePassivate , PostActivate , and/or ejbCreate <METHOD> , ejbRemove,
ejbPassivate, and ejbActivate methods of a stateful session bean with container-managed transaction
demarcation are invoked in the scope of a transaction determined by the transaction attribute
specified in the bean’s metadata annotations or deployment descriptor.

The Init methods of a session bean with container-managed transaction demarcation execute with an
unspecified transaction context. Refer to Subsection See Handling of Methods that Run with “an
unspecified transaction context” for how the container executes methods with an unspecified
transaction context .

In some cases, lifecycle callback interceptor methods initiated solely by the container without an
associated client invocation run in an unspecified security context, e.g., a PostConstruct method
callback invoked as a side-effect of the injection of a remote or local business interface reference.
However, the container is still required to permit client calls to these methods according to the rules in
this table (see note on See Note: Callback methods are permitted to have public access type. This raises
the question of whether a callback method can also be exposed as a business method through one or
more client views. Doing so is not prohibited, but should be done with caution. The runtime context
(e.g. transaction context, caller principal, operations allowed, etc.) for a method invoked as a callback
can differ significantly from the context for the same method when invoked via a client invocation. As
a general rule, callback methods should not be exposed as business methods. Therefore, it is
recommended that all non-business methods be assigned an access type other than public.).

Additional restrictions:

The getRollbackOnly and setRollbackOnly methods of the SessionContext interface should be used only
in the session bean methods that execute in the context of a transaction. The container must throw the
java.lang.IllegalStateException if the methods are invoked while the instance is not associated with a
transaction.

The reasons for disallowing the operations in Table See Operations Allowed in the Methods of a
Stateful Session Bean follow:

Invoking the getBusinessObject method is disallowed if the session bean does not define a business
interface or a no-interface view.

Invoking the getInvokedBusinessInterface method is disallowed if the session bean does not define a
business interface or a no-interface view. It is also disallowed if the current business method was not
invoked through a business interface or the no-interface view.

4.6. Stateful Session Beans

70 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a2889
Ejb.html#a2889
Ejb.html#a1516
Ejb.html#a1516
Ejb.html#a1516
Ejb.html#a1516
Ejb.html#a1516
Ejb.html#a1516
Ejb.html#a1516
Ejb.html#a953
Ejb.html#a953

Invoking the getEJBObject and getEJBHome methods is disallowed if the session bean does not define a
remote component client view.

Invoking the getEJBLocalObject and getEJBLocalHome methods is disallowed if the session bean does
not define a local component client view.

Invoking the getRollbackOnly and setRollbackOnly methods is disallowed in the session bean methods
for which the container does not have a meaningful transaction context, and to all session beans with
bean-managed transaction demarcation.

Accessing resource managers and enterprise beans is disallowed in the session bean methods for
which the container does not have a meaningful transaction context and/or client security context.

The UserTransaction interface is unavailable to enterprise beans with container-managed transaction
demarcation.

The TimerService interface is unavailable to stateful session beans.

Invoking the getMessageContext method is disallowed for stateful session beans.

Invoking the getEJBObject and getEJBLocalObject methods is disallowed in the session bean methods in
which there is no session object identity established for the instance.

Invoking the wasCancelCalled method is disallowed except when inside the context of the
asynchronous methods that declare Future<V> object as the returning type.

4.6.3. Dealing with Exceptions

A RuntimeException that is not an application exception thrown from any method of the stateful
session bean class (including the business methods and the lifecycle callback interceptor methods
invoked by the container) results in the transition to the “does not exist” state. Exception handling is
described in detail in Chapter See Exception Handling. See the Interceptors specification See
Interceptors for the rules pertaining to lifecycle callback interceptor methods when more than one
such method applies to the bean class.

From the client perspective, the corresponding session object does not exist any more. If a client
subsequently attempts to invoke a method on the bean’s business interface or the no-interface view,
the container will throw the javax.ejb.NoSuchEJBException28 . If the EJB 2.1 client view is used, the
container will throw the java.rmi.NoSuchObjectException if the client is a remote client, or the
javax.ejb.NoSuchObjectLocalException if the client is a local client.

4.6.4. Missed PreDestroy Calls

The Bean Provider cannot assume that the container will always invoke the PreDestroy lifecycle
callback interceptor method(s) (or ejbRemove method) for a stateful session bean instance. The
following scenarios result in the PreDestroy lifecycle callback interceptor method(s) not being called
for an instance:

4.6. Stateful Session Beans

DRAFT Jakarta Enterprise Beans, Core Features 71

Ejb.html#a2940
Ejb.html#a9887
Ejb.html#a9887
#a10247

A crash of the EJB container.

A system exception thrown from the instance’s method to the container.

A timeout of client inactivity while the instance is in the passive state. The timeout is specified by the
Deployer in an EJB container implementation-specific way.

If resources are allocated in a PostConstruct lifecycle callback interceptor method (or
ejbCreate<METHOD> method) and/or in the business methods, and normally released in a PreDestroy
lifecycle callback interceptor method, these resources will not be automatically released in the above
scenarios. The application using the stateful session bean should provide some clean up mechanism to
periodically clean up the unreleased resources.

For example, if a shopping cart component is implemented as a session bean, and the session bean
stores the shopping cart content in a database, the application should provide a program that runs
periodically and removes “abandoned” shopping carts from the database.

4.6.5. Disabling Passivation of Stateful Session Beans

By default, the container may passivate a stateful session bean instance to a secondary storage to save
resources. However, the Bean Provider can optionally configure the stateful session bean to prevent
passivation of its instances.

For example, a stateful session bean instance may contain non-serializable attributes which would
lead to runtime exceptions during passivation, or passivation and activation of such instances may
cause degradation of application performance.

If the passivationCapable element of the Stateful annotation is set to false or the passivation-capable
element of the session deployment descriptor element is set to false, the container must not attempt to
passivate instances of the bean.

Note: application server vendors may use passivation as a technique to provide high availability of
stateful session beans by replicating their state from one JVM instance to another across which the
container is distributed. In a failure situation, a stateful session bean is made available on a new JVM
instance by what is commonly called stateful session bean failover. If a container implementation
supports failover of stateful session beans using bean passivation, the failover capability for not
passivation capable stateful session beans is not defined.

4.6.6. Transaction Semantics of Initialization, Destruction, Activation and
Passivation

By default a stateful session bean’s PostConstruct , PreDestroy , PrePassivate and PostActivate methods
are executed in an unspecified transactional context. A PostConstruct , PreDestroy , PrePassivate and
PostActivate method of a stateful session bean with container-managed transaction demarcation is
permitted to have transaction attribute REQUIRES_NEW or NOT_SUPPORTED (RequiresNew or
NotSupported if the deployment descriptor is used to specify the transaction attribute).

4.6. Stateful Session Beans

72 Jakarta Enterprise Beans, Core Features DRAFT

4.6.7. Restrictions for Transactions

The state diagram implies the following restrictions on transaction scoping of the client invoked
business methods. The restrictions are enforced by the container and must be observed by the client
programmer.

A stateful session bean instance can participate in at most a single transaction at a time.

If a stateful session bean instance is participating in a transaction, it is an error for a client to invoke a
method on the session object such that the transaction attribute specified in the bean’s metadata
annotations and/or the deployment descriptor would cause the container to execute the method in a
different transaction context or in an unspecified transaction context. In such a case, the
javax.ejb.EJBException will be thrown to a client of the bean’s business interface29. If the EJB 2.1 client
view is used, the container throws the java.rmi.RemoteException to the client if the client is a remote
client, or the javax.ejb.EJBException if the client is a local client.

If a stateful session bean instance is participating in a transaction, it is an error for a client to invoke
the remove method on the session object’s home or component interface object. The container must
detect such an attempt and throw the javax.ejb.RemoveException to the client. The container should not
mark the client’s transaction for rollback, thus allowing the client to recover. Note that this restriction
only applies to the remove method on the session object’s home or component interface, not to the
invocation of Remove methods.

4.7. Stateless Session Beans
Stateless session beans are session beans whose instances have no conversational state. This means
that all bean instances are equivalent when they are not involved in servicing a client-invoked method.

The term “stateless” signifies that an instance has no state for a specific client. However, the instance
variables of the instance can contain the state across client-invoked method calls. Examples of such
state include an open database connection and an object reference to an enterprise bean object.

The Bean Provider must exercise caution if retaining any application state across method calls. In
particular, references to bean instance variables should not be returned through multiple local
interface method calls.

Because all instances of a stateless session bean are equivalent, the container can choose to delegate a
client-invoked method to any available instance. This means, for example, that the container may
delegate the requests from the same client within the same transaction to different instances, and that
the container may interleave requests from multiple transactions to the same instance.

A container only needs to retain the number of instances required to service the current client load.
Due to client “think time,” this number is typically much smaller than the number of active clients.
Passivation is not needed or used for stateless session beans. The container creates another stateless
session bean instance if one is needed to handle an increase in client work load. If a stateless session
bean is not needed to handle the current client work load, the container can destroy it.

4.7. Stateless Session Beans

DRAFT Jakarta Enterprise Beans, Core Features 73

#a10248

Because stateless session beans minimize the resources needed to support a large population of clients,
depending on the implementation of the container, applications that use stateless session beans may
scale somewhat better than those using stateful session beans. However, this benefit may be offset by
the increased complexity of the client application that uses the stateless beans.

There is no fixed mapping between clients and stateless instances. The container simply delegates a
client’s work to any available instance that is method-ready.

Local and remote clients using the EJB 2.1 client view interfaces use the create and remove methods on
the home interface of a stateless session bean in the same way as on a stateful session bean. To the EJB
2.1 client, it appears as if the client controls the life cycle of the session object. However, the container
handles the create and remove calls without necessarily creating and removing an EJB instance. The
home interface of a stateless session bean must have one create method that takes no arguments. The
create method of the remote home interface must return the session bean’s remote interface. The
create method of the local home interface must return the session bean’s local interface. There can be
no other create methods in the home interface.

A stateless session bean must not implement the javax.ejb.SessionSynchronization interface or use the
session synchronization annotations.

4.7.1. Stateless Session Bean Lifecycle State Diagram

When a client calls a method on a stateless session object or invokes a method on a stateless session
bean through its web service client view, the container selects one of its method-ready __ instances and
delegates the method invocation to it.

The following figure illustrates the life cycle of a stateless session bean instance.

===

Life Cycle of a Stateless Session Bean

4.7. Stateless Session Beans

74 Jakarta Enterprise Beans, Core Features DRAFT

The following steps describe the life cycle of a stateless session bean instance:

A stateless session bean instance’s life starts when the container invokes the session bean class
constructor to create a new session bean instance30. Next, the container performs any dependency
injection as specified by metadata annotations on the bean class or by the deployment descriptor. The
container then calls the PostConstruct lifecycle callback interceptor methods for the bean, if any. The
container can perform the instance creation at any time—there is no direct relationship to a client’s
invocation of a business method or the create method.

The session bean instance is now ready to be delegated a business method call from any client or a call
from the container to a timeout callback method.

When the container no longer needs the instance (usually when the container wants to reduce the
number of instances in the method-ready pool), the container invokes the PreDestroy lifecycle callback
interceptor methods for it, if any. This ends the life of the stateless session bean instance.

4.7.2. Operations Allowed in the Methods of a Stateless Session Bean Class

Table See Operations Allowed in the Methods of a Stateless Session Bean defines the methods of a
stateless session bean class in which the session bean instances can access the methods of the
javax.ejb.SessionContext interface, the java:comp/env environment naming context, resource
managers, TimerService and Timer methods, the EntityManager and EntityManagerFactory methods,
and other enterprise beans.

If a session bean instance attempts to invoke a method of the SessionContext interface, and the access
is not allowed in Table See Operations Allowed in the Methods of a Stateless Session Bean, the
container must throw the java.lang.IllegalStateException.

If a session bean instance attempts to invoke a method of the TimerService or Timer interface and the
access is not allowed in Table See Operations Allowed in the Methods of a Stateless Session Bean, the

4.7. Stateless Session Beans

DRAFT Jakarta Enterprise Beans, Core Features 75

#a10249
Ejb.html#a1091
Ejb.html#a1091
Ejb.html#a1091

container must throw the java.lang.IllegalStateException .

If a session bean instance attempts to access a resource manager, an enterprise bean, an entity
manager or entity manager factory, and the access is not allowed in Table See Operations Allowed in
the Methods of a Stateless Session Bean, the behavior is undefined by the EJB architecture.

===

Operations Allowed in the Methods of a Stateless Session Bean

Bean method

Bean method can perform the following operations

Container-managed transaction demarcation

Bean-managed transaction demarcation

constructor

-

-

dependency injectionmethods (e.g., setSessionContext)

SessionContext methods: getEJBHome, getEJBLocalHome, lookup

JNDI access to java:comp/env

SessionContext methods: getEJBHome, getEJBLocalHome, lookup

JNDI access to java:comp/env

PostConstruct, PreDestroy lifecycle callback interceptor methods31

SessionContext methods: getBusinessObject, getEJBHome, getEJBLocalHome, getEJBObject,
getEJBLocalObject, getTimerService, lookup, getContextData

JNDI access to java:comp/env

EntityManagerFactory access

SessionContext methods: getBusinessObject, getEJBHome, getEJBLocalHome, getEJBObject,
getEJBLocalObject, getUserTransaction, getTimerService, lookup, getContextData

JNDI access to java:comp/env

EntityManagerFactory access

4.7. Stateless Session Beans

76 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a1091
Ejb.html#a1091
#a10250

business method

from business interface or from no-interface view or from component interface; business method
interceptor method

SessionContext methods: getBusinessObject , getEJBHome, getEJBLocalHome, getCallerPrincipal,
isCallerInRole, getRollbackOnly, setRollbackOnly, getEJBObject, getEJBLocalObject, getTimerService,
getInvokedBusinessInterface, wasCancelCalled, lookup, getContextData

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

TimerService and Timer methods

SessionContext methods: getBusinessObject, getEJBHome, getEJBLocalHome, getCallerPrincipal,
isCallerInRole, getEJBObject, getEJBLocalObject, getUserTransaction, getTimerService,
getInvokedBusinessInterface, wasCancelCalled, lookup, getContextData

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

TimerService and Timer methods

business method

from web service endpoint

SessionContext methods: getBusinessObject, getEJBHome, getEJBLocalHome, getCallerPrincipal,
isCallerInRole, getRollbackOnly, setRollbackOnly, getEJBObject, getEJBLocalObject, getTimerService,
getMessageContext, lookup, getContextData

Message context methods

4.7. Stateless Session Beans

DRAFT Jakarta Enterprise Beans, Core Features 77

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

TimerService and Timer methods

SessionContext methods: getBusinessObject, getEJBHome, getEJBLocalHome, getCallerPrincipal,
isCallerInRole, getEJBObject, getEJBLocalObject, getUserTransaction, getTimerService,
getMessageContext, lookup, getContextData

UserTransaction methods

Message context methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

TimerService and Timer methods

timeout callback method

SessionContext methods: getBusinessObject, getEJBHome, getEJBLocalHome, getCallerPrincipal,
isCallerInRole, getRollbackOnly, setRollbackOnly, getEJBObject, getEJBLocalObject, getTimerService,
lookup, getContextData

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

TimerService and Timer methods

4.7. Stateless Session Beans

78 Jakarta Enterprise Beans, Core Features DRAFT

SessionContext methods: getBusinessObject, getEJBHome, getEJBLocalHome, getCallerPrincipal,
isCallerInRole, getEJBObject, getEJBLocalObject, getUserTransaction, getTimerService, lookup,
getContextData

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

TimerService and Timer methods

Additional restrictions:

The getRollbackOnly and setRollbackOnly methods of the SessionContext interface should be used only
in the session bean methods that execute in the context of a transaction. The container must throw the
java.lang.IllegalStateException if the methods are invoked while the instance is not associated with a
transaction.

The reasons for disallowing operations in Table See Operations Allowed in the Methods of a Stateless
Session Bean:

Invoking the getBusinessObject method is disallowed if the session bean does not define a business
interface or a no-interface view.

Invoking the getInvokedBusinessInterface method is disallowed if the session bean does not define a
business interface or a no-interface view. It is also disallowed if the current business method was not
invoked through a business interface or the no-interface view.

Invoking the getEJBObject and getEJBHome methods is disallowed if the session bean does not define a
remote component client view.

Invoking the getEJBLocalObject and getEJBLocalHome methods is disallowed if the session bean does
not define a local component client view.

Invoking the getRollbackOnly and setRollbackOnly methods is disallowed in the session bean methods
for which the container does not have a meaningful transaction context, and for all session beans with
bean-managed transaction demarcation.

Invoking the getMessageContext method is disallowed in session bean methods that were not invoked
by the container through the session bean’s web service endpoint.

Accessing resource managers, enterprise beans, and the EntityManager is disallowed in the session

4.7. Stateless Session Beans

DRAFT Jakarta Enterprise Beans, Core Features 79

Ejb.html#a1091
Ejb.html#a1091

bean methods for which the container does not have a meaningful transaction context and/or client
security context.

The UserTransaction interface is unavailable to session beans with container-managed transaction
demarcation.

Invoking the wasCancelCalled method is disallowed except when inside the context of the
asynchronous methods that declare Future<V> object as the returning type.

4.7.3. Dealing with Exceptions

A RuntimeException that is not an application exception thrown from any method of the enterprise
bean class (including the business methods and the lifecycle callback interceptor methods invoked by
the container) results in the transition to the “does not exist” state. Exception handling is described in
detail in Chapter See Exception Handling. See the Interceptors specification See Interceptors for the
rules pertaining to lifecycle callback interceptor methods when more than one such method applies to
the bean class.

From the client perspective, the session object continues to exist. The client can continue accessing the
session object because the container can delegate the client’s requests to another instance.

4.8. Singleton Session Beans
A singleton session bean is a session bean component that is instantiated once per application. In cases
where the container is distributed over many virtual machines, each application will have one bean
instance of the singleton for each JVM.

Once instantiated, a singleton session bean instance lives for the duration of the application in which it
is created. It maintains its state between client invocations but its state is not required to survive
container shutdown or crash.

A singleton session bean is intended to be shared, and it supports concurrent access.

A singleton session bean must not implement the javax.ejb.SessionSynchronization interface or use the
session synchronization annotations.

===

Life Cycle of a Singleton Session Bean

4.8. Singleton Session Beans

80 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a2940
Ejb.html#a9887

The following steps describe the life cycle of a singleton session bean instance:

A singleton session bean instance’s life starts when the container invokes the session bean class
constructor to create the singleton bean instance32. Next, the container performs any dependency
injection as specified by the metadata annotations on the bean class or by the deployment descriptor.
The container then calls the PostConstruct lifecycle callback interceptor methods for the bean, if any.

The singleton bean instance is now ready to be delegated a business method call from any client or a
call from the container to a timeout callback method.

When the application is shutting down, the container invokes the PreDestroy lifecycle callback
interceptor methods on the singleton session bean instance, if any. This ends the life of the singleton
session bean instance.

4.8.1. Singleton Session Bean Initialization

By default, the container is responsible for deciding when to initialize a singleton session bean
instance. However, the Bean Provider can optionally configure the singleton session bean for eager
initialization. If the Startup annotation appears on the singleton session bean class or if the singleton
session bean has been designated via the deployment descriptor as requiring eager initialization, the
container must initialize the singleton session bean instance during the application startup sequence.
The container must initialize all such startup-time singleton session beans before any external client
requests (that is, client requests originating outside of the application) are delivered to any enterprise
bean components in the application.

The following example shows a singleton session bean with startup logic that initializes its shared
state:

@Startup

4.8. Singleton Session Beans

DRAFT Jakarta Enterprise Beans, Core Features 81

#a10251

@Singleton

public class SharedBean implements Shared \{

private SharedData state;

@PostConstruct

void init() \{

// initialize shared data

...

}

...

}

In some cases, explicit initialization ordering dependencies exist between multiple singleton session
bean components in an application. The DependsOn annotation is used to express these dependencies.
A DependsOn dependency is used in cases where one singleton session bean must initialize before one
or more other singleton session beans. The container ensures that all singleton session beans with
which a singleton session bean has a DependsOn relationship have been initialized before the
PostConstruct method is called.

Note that if one singleton session bean merely needs to invoke another singleton session bean from its
PostConstruct method, no explicit ordering metadata is required. In that case, the first singleton
session bean would merely use an EJB reference to invoke the target singleton session bean. In this
case, the acquisition of the EJB reference (either through injection or lookup) does not necessarily
imply the actual creation of the corresponding singleton session bean instance.

The following examples illustrate the use of DependsOn metadata:

@Singleton

public class B \{ … }

4.8. Singleton Session Beans

82 Jakarta Enterprise Beans, Core Features DRAFT

@DependsOn("B")

@Singleton

public class A \{ … }

In the above example, the container must guarantee that singleton B is initialized before singleton A .
The DependsOn value attribute holds one or more strings, where each specifies the ejb-name of the
target singleton session bean.

In the following example, the container must guarantee that singletons B and C are initialized before
singleton A . In the case of multiple values, the ordering in which the target ejb-name values are listed
is not preserved at runtime. For example, if singleton B has an ordering dependency on singleton C , it
is singleton B ’s responsibility to explicitly capture that in its own metadata.

@Singleton

public class B \{ … }

@Singleton(name="Cbean")

public class C \{ … }

@DependsOn(\{"B", "Cbean"})

@Singleton

public class A \{ … }

The following example illustrates the use of the fully-qualified ejb-name syntax to refer to a singleton
session bean packaged within a different module in the same application.

different ejb-jars within

@Singleton

public class B \{ … }

@DependsOn("b.jar#B")

@Singleton

public class A \{ … }

Circular dependencies within the DependsOn metadata are not permitted. Circular dependencies are
not required to be detected by the container but may result in a deployment error.

4.8. Singleton Session Beans

DRAFT Jakarta Enterprise Beans, Core Features 83

4.8.2. Singleton Session Bean Destruction

Any singleton session bean instance that successfully completes initialization is removed by the
container during application shutdown. At this time the container must invoke the PreDestroy lifecycle
callback interceptor methods on the singleton session bean instance, if any. The container ensures that
all singleton session beans with which a singleton session bean has a DependsOn relationship are still
available during the PreDestroy callback. After the PreDestroy callback completes, the container ends
the life of the singleton session bean instance.

4.8.3. Transaction Semantics of Initialization and Destruction

The PostConstruct and PreDestroy methods of singleton session beans with container-managed
transaction demarcation can be invoked with or without a transaction. From the Bean Provider’s view
there is no client of a PostConstruct or PreDestroy method.

A PostConstruct or PreDestroy method of a singleton session bean with container-managed transaction
demarcation is permitted to have transaction attribute REQUIRED , REQUIRES_NEW , or
NOT_SUPPORTED (Required , RequiresNew , or NotSupported if the deployment descriptor is used to
specify the transaction attribute).

 _Note that the container must start a new
transaction if the_ _REQUIRED_ _(_ _Required_ _)_ _transaction attribute
is used. This guarantees, for example, that the transactional behavior
of the_ _PostConstruct_ _method is the same regardless of whether the
singleton session bean instance is initialized eagerly at container
startup time or as a side effect of a first client invocation on the
singleton session bean._ The REQUIRED transaction attribute value is
allowed so that specification of a transaction attribute for the
singleton session bean’s _PostConstruct_ _and_ _PreDestroy_ _methods_
can be defaulted.

4.8.4. Singleton Session Bean Error Handling

Errors occurring during singleton session bean initialization are considered fatal and must result in
the discarding of the singleton session bean instance. Possible initialization errors include injection
failure, a system exception thrown from an AroundConstruct or PostConstruct method, or the failure
of a PostConstruct method’s container-managed transaction to successfully commit. If a singleton
session bean fails to initialize, attempted invocations on the singleton session bean result in the
javax.ejb.NoSuchEJBException exception as defined by See Session Bean’s Business Interface and See
Session Bean’s No-Interface View .

The same singleton session bean instance must remain active until application shutdown. Unlike
instances of other component types, system exceptions thrown from business methods or callbacks of
a singleton session bean do not result in the destruction of the singleton instance.

4.8. Singleton Session Beans

84 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a304
Ejb.html#a312
Ejb.html#a312

4.8.5. Singleton Session Bean Concurrency

From the client’s perspective, a singleton session bean always supports concurrent access. In general,
the client of a singleton session bean does not have to concern itself with whether other clients might
be accessing the singleton session bean at the same time.

From the Bean Provider’s perspective, there are two approaches for controlling singleton session bean
concurrency behavior:

container-managed concurrency: the container controls concurrent access to the bean instance based
on method-level locking metadata

bean-managed concurrency: the container allows full concurrent bean instance access and defers state
synchronization responsibility to the Bean Provider

When designing a singleton session bean, the bean provider must decide whether the bean will use
container-managed or bean-managed concurrency. Typically singleton session beans will be specified
to have container-managed concurrency. This is the default if no concurrency management type is
specified. A singleton session bean can be designed to use either container-managed concurrency or
bean-managed concurrency but it cannot use both.

The lifecycle of any interceptor classes associated with a singleton session bean have the same lifecycle
and concurrency behavior as that of the singleton session bean itself. Each interceptor class will be
instantiated once per singleton session bean instance. Any state stored in an instance of an interceptor
class associated with a singleton session bean should be considered when devising the concurrency
plan for the bean.

It is legal to store Java EE objects that do not support concurrent access (e.g. references to Java
Persistence entity managers or stateful session beans) within the singleton session bean instance state.
However, it is the responsibility of the Bean Provider to ensure such objects are not accessed by more
than one thread at a time.

Independent of the bean’s concurrency management type, the container must ensure that no
concurrent access to the singleton session bean instance occurs until after the instance has successfully
completed its initialization sequence, including any PostConstruct lifecycle callback method(s). The
container must temporarily block any singleton session bean access attempts that arrive while the
singleton session bean is still initializing.

Independent of the bean’s concurrency management type, the container must ensure that concurrent
access to the SessionContext object is thread-safe.

Singleton session beans support reentrant calls, i.e., where an outbound call from a singleton session
bean method results in a loopback call to the singleton session bean on the same thread. Reentrant
singleton session beans should be programmed and used with caution. Special locking semantics apply
to loopback calls on singleton session beans with container-managed concurrency as described below.

4.8. Singleton Session Beans

DRAFT Jakarta Enterprise Beans, Core Features 85

4.8.5.1. Container-Managed Concurrency

With container-managed concurrency, the container is responsible for controlling concurrent access to
the bean instance based on method-level locking metadata. Each business method or timeout method
is associated with either a read (shared) lock or a write (exclusive) lock.

If the container invokes a method associated with a read lock, any number of other concurrent
invocations on methods with read locks are allowed to access the bean instance simultaneously.

If the container invokes a method associated with a write lock, no other concurrent invocations will be
allowed to proceed until the method holding the write lock completes its processing.

A concurrent access attempt that is not allowed to proceed due to locking is blocked until it can make
forward progress. Timeouts can be specified via metadata so that a blocked request can be rejected if a
lock is not acquired within a certain amount of time. If a singleton session bean invocation is rejected
due to lock timeout the ConcurrentAccessTimeoutException is thrown to the client.

This specification only mandates the basic read and write locking semantics outlined above. There are
many policy decisions that a container could make to affect the performance of the locking scheme for
a given application. For example:

Determining whether to grant forward progress to a read method or write method, when both readers
and writers are waiting at the time that a write method completes.

Determining whether to allow additional readers while one or more readers is active and a writer is
waiting.

The exact set of additional read/write locking policy decisions supported by a Container Provider and
the configuration requirements for those policies are outside the scope of this specification.

Reentrant Locking Behavior

Special locking semantics apply to loopback calls on singleton session beans with container-managed
concurrency.

If a loopback call occurs on a singleton session bean that already holds a write lock on the same
thread:

If the target of the loopback call is a read method, the read lock must always be granted immediately,
without releasing the original write lock.

If the target of the loopback call is a write method, the call must proceed immediately, without
releasing the original write lock.

If a loopback call occurs on a singleton session bean that holds a read lock on the same thread (but
does not also hold a write lock on the same thread):

If the target of the loopback call is a read method, the call must proceed immediately, without releasing

4.8. Singleton Session Beans

86 Jakarta Enterprise Beans, Core Features DRAFT

the original Read lock.

If the target of the loopback call is a write method, the javax.ejb.IllegalLoopbackException must be
thrown to the caller.

4.8.5.2. Bean-Managed Concurrency

With bean-managed concurrency, the container allows full concurrent access to the singleton session
bean instance. It is the responsibility of the Bean Provider to guard its state as necessary against
synchronization errors due to concurrent access. The Bean Provider is permitted to use the Java
language level synchronization primitives such as synchronized and volatile for this purpose.

4.8.5.3. Specification of a Concurrency Management Type

By default, a singleton session bean has container-managed concurrency. The Bean Provider of a
singleton session bean can use the ConcurrencyManagement annotation on the bean class to declare
the bean’s concurrency management type.

Alternatively, the Bean Provider can use the deployment descriptor to specify the bean’s concurrency
management type. If the deployment descriptor is used, it is only necessary to explicitly specify the
bean’s concurrency management type if bean-managed concurrency is used.

The concurrency management type of a singleton session bean is determined by the Bean Provider.
The Application Assembler is not permitted to use the deployment descriptor to override a bean’s
concurrency management type regardless of whether it has been explicitly specified or defaulted by
the Bean Provider. (See Chapter See Deployment Descriptor for information about the deployment
descriptor.)

4.8.5.4. Specification of the Container-Managed Concurrency Metadata for a Bean’s Methods

The Bean Provider of a singleton session bean with container-managed concurrency may specify
locking metadata for the enterprise bean’s methods. By default, the value of the lock associated with a
method of a bean with container managed concurrency is a write lock (exclusive lock).

A concurrency locking attribute is a value associated with each of the following methods:

a method of a bean’s business interface

a method of a bean’s no-interface view

a timeout callback method

a web service endpoint method

The concurrency locking attribute specifies how the container must manage concurrency when a
client invokes the method.

Concurrency locking attributes are specified for the following methods:

4.8. Singleton Session Beans

DRAFT Jakarta Enterprise Beans, Core Features 87

Ejb.html#a5804

For a bean written to the EJB 3.x client view API, the concurrency locking attributes are specified for
those methods of the bean class that correspond to the bean’s business interface, the direct and
indirect superinterfaces of the business interface, methods exposed through the no-interface view, and
for timeout callback methods, if any.

For a bean that provides a web service client view, the concurrency locking attributes are specified for
those methods of the bean class that correspond to the bean’s web service endpoint methods, and for
timeout callback methods, if any.

The following rules apply to the specification of concurrency attributes.

The Lock(READ) and Lock(WRITE)annotations are used to specify concurrency locking attributes.

The concurrency locking attributes for the methods of a bean class may be specified on the class, the
business methods of the class, or both.

Specifying the Lock annotation on the bean class means that it applies to all applicable business
methods of the class. If the concurrency locking attribute is not specified, it is assumed to be
Lock(WRITE). The absence of a concurrency attribute specification on the bean class is equivalent to
the specification of Lock(WRITE)on the bean class.

A concurrency locking attribute may be specified on a method of the bean class to override the
concurrency locking attribute value explicitly or implicitly specified on the bean class.

If the bean class has superclasses, the following additional rules apply:

A concurrency locking attribute specified on a superclass S appplies to the business methods defined
by S. If a class-level concurrency attribute is not specified on S, it is equivalent to specification of
Lock(WRITE)on S.

A concurrency locking attribute may be specified on a business method M defined by class S to
override for method M the concurrency locking attribute value explicitly or implicitly specified on the
class S.

If a method M of class S overrides a business method defined by a superclass of S, the concurrency
locking attribute of M is determined by the above rules as applied to class S.

The Bean Provider may use the deployment descriptor as an alternative to metadata annotations to
specify the concurrency locking attributes. Concurrency locking attributes specified in the deployment
descriptor are assumed to override or supplement concurrency locking attributes specified in
annotations. If a concurrency locking attribute value is not specified in the deployment descriptor, it is
assumed that the concurrency locking attribute specified in annotations applies, or — in the case that
no annotation has been specified —that the value is Write.

The Application Assembler is permitted to override the concurrency locking attribute values using the
bean’s deployment descriptor. The Deployer is also permitted to override the concurrency locking
attribute values at deployment time. Caution should be exercised when overriding the concurrency

4.8. Singleton Session Beans

88 Jakarta Enterprise Beans, Core Features DRAFT

locking attributes of an application, as the concurrency structure of an application is typically intrinsic
to the semantics of the application.

Example:

@Lock(READ)

public class SomeClass \{

public void aMethod () \{ ... }

public void bMethod () \{ ... }

...

}

@Singleton public class ABean extends SomeClass implements A \{

public void aMethod () \{ ... }

@Lock(WRITE)

public void cMethod () \{ ... }

...

}

Assuming that aMethod, bMethod, cMethod of singleton session bean ABean are methods of business
interface A, their concurrency locking attributes are Lock(WRITE), Lock(READ), and
Lock(WRITE)respectively.

4.8.5.5. Concurrent Access Timeouts

A concurrent access attempt that cannot immediately acquire the appropriate lock is blocked until it
can make forward progress. The AccessTimeout annotation is used to specify the amount of time the
access attempt should be blocked before timing out. Access timeouts only apply to methods eligible for
concurrency locks on a singleton session bean with container-managed concurrency. If an access

4.8. Singleton Session Beans

DRAFT Jakarta Enterprise Beans, Core Features 89

attempt times out, the container throws the javax.ejb.ConcurrentAccessTimeoutException to the client.

The AccessTimeout annotation can be specified on a business method or on a bean class (or
superclass). An AccessTimeout annotation specified on a class applies the access timeout to all business
methods of that class. If the AccessTimeout annotation is specified on both a class and on a business
method of that class, the method-level annotation takes precedence.

An AccessTimeout value of -1 indicates that the client request will block indefinitely until forward
progress can be made.

An AccessTimeout value of 0 indicates that concurrent access is not allowed. Access attempts on
methods with a timeout value of 0 result in the javax.ejb.ConcurrentAccessException.

4.8.6. Operations Allowed in the Methods of a Singleton Session Bean

Table See Operations Allowed in the Methods of a Singleton Session Bean defines the methods of a
singleton session bean class in which the session bean instances can access the methods of the
javax.ejb.SessionContext interface, the java:comp/env environment naming context, resource
managers, TimerService and Timer methods, the EntityManager and EntityManagerFactory methods,
and other enterprise beans.

If a session bean instance attempts to invoke a method of the SessionContext interface, and the access
is not allowed in Table See Operations Allowed in the Methods of a Singleton Session Bean, the
container must throw the java.lang.IllegalStateException.

If a session bean instance attempts to invoke a method of the TimerService or Timer interface and the
access is not allowed in Table See Operations Allowed in the Methods of a Singleton Session Bean, the
container must throw the java.lang.IllegalStateException .

If a session bean instance attempts to access a resource manager, an enterprise bean, an entity
manager or entity manager factory, and the access is not allowed in Table See Operations Allowed in
the Methods of a Singleton Session Bean, the behavior is undefined by the EJB architecture.

===

Operations Allowed in the Methods of a Singleton Session Bean

Bean method

Bean method can perform the following operations

Container-managed transaction demarcation

Bean-managed transaction demarcation

constructor

-

4.8. Singleton Session Beans

90 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a1343
Ejb.html#a1343
Ejb.html#a1343
Ejb.html#a1343
Ejb.html#a1343

-

dependency injectionmethods

SessionContext methods: lookup

JNDI access to java:comp/env

SessionContext methods: lookup

JNDI access to java:comp/env

PostConstruct, PreDestroy lifecycle callback interceptor methods33

SessionContext methods: getBusinessObject , getRollbackOnly, setRollbackOnly, getTimerService,
lookup, getContextData

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

TimerService and Timer methods

SessionContext methods: getBusinessObject, getUserTransaction, getTimerService, lookup,
getContextData

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManager access

EntityManagerFactory access

TimerService and Timer methods

business method

from business interface or from no-interface view ; business method interceptor method

4.8. Singleton Session Beans

DRAFT Jakarta Enterprise Beans, Core Features 91

#a10252

SessionContext methods: getBusinessObject , getCallerPrincipal, isCallerInRole, getRollbackOnly,
setRollbackOnly, getTimerService, getInvokedBusinessInterface, wasCancelCalled, lookup,
getContextData

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

TimerService and Timer methods

SessionContext methods: getBusinessObject, getCallerPrincipal, isCallerInRole, getUserTransaction,
getTimerService, getInvokedBusinessInterface, wasCancelCalled, lookup, getContextData

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

TimerService and Timer methods

business method

from web service endpoint

SessionContext methods: getBusinessObject, getCallerPrincipal, isCallerInRole, getRollbackOnly,
setRollbackOnly, getTimerService, getMessageContext, lookup, getContextData

Message context methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

4.8. Singleton Session Beans

92 Jakarta Enterprise Beans, Core Features DRAFT

EntityManager access

TimerService and Timer methods

SessionContext methods: getBusinessObject , getCallerPrincipal, isCallerInRole, getUserTransaction,
getTimerService, getMessageContext, lookup, getContextData

UserTransaction methods

Message context methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

TimerService and Timer methods

timeout callback method

SessionContext methods: getBusinessObject , getCallerPrincipal, isCallerInRole, getRollbackOnly,
setRollbackOnly, getTimerService, lookup, getContextData

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

TimerService and Timer methods

SessionContext methods: getBusinessObject , getCallerPrincipal, isCallerInRole, getUserTransaction,
getTimerService, lookup, getContextData

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

4.8. Singleton Session Beans

DRAFT Jakarta Enterprise Beans, Core Features 93

EntityManagerFactory access

EntityManager access

TimerService and Timer methods

Additional restrictions:

The getRollbackOnly and setRollbackOnly methods of the SessionContext interface should be used only
in the session bean methods that execute in the context of a transaction. The container must throw the
java.lang.IllegalStateException if the methods are invoked while the current business method is not
executing in the context of a transaction.

Invoking the wasCancelCalled method is disallowed except when inside the context of the
asynchronous methods that declare Future<V> object as the returning type

The reasons for disallowing operations in Table See Operations Allowed in the Methods of a Singleton
Session Bean:

Invoking the getBusinessObject method is disallowed if the session bean does not define a business
interface or a no-interface view.

Invoking the getInvokedBusinessInterface method is disallowed if the session bean does not define a
business interface or a no-interface view. It is also disallowed if the current business method was not
invoked through a business interface or the no-interface view.

Invoking the getEJBObject and getEJBHome methods is disallowed since a singleton session bean does
not support the EJB 2.x remote client view.

Invoking the getEJBLocalObject and getEJBLocalHome methods is disallowed since a singleton session
bean does not support the EJB 2.x local client view.

Invoking the getRollbackOnly and setRollbackOnly methods is disallowed in the session bean methods
for which the container does not have a meaningful transaction context, and for all session beans with
bean-managed transaction demarcation.

Invoking the getMessageContext method is disallowed in session bean methods that were not invoked
by the container through the session bean’s web service endpoint.

Accessing resource managers, enterprise beans, and the EntityManager is disallowed in the session
bean methods for which the container does not have a meaningful transaction context and/or client
security context.

The UserTransaction interface is unavailable to session beans with container-managed transaction
demarcation.

4.8. Singleton Session Beans

94 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a1343
Ejb.html#a1343

4.9. The Responsibilities of the Bean Provider
This section describes the responsibilities of the session Bean Provider to ensure that a session bean
can be deployed in any EJB container. These requirements apply to stateful session beans, stateless
session beans, and singleton session beans.

4.9.1. Classes and Interfaces

The session Bean Provider is responsible for providing the following class files34:

Session bean class.

Session bean’s business interface(s), if the session bean provides an EJB 3.x local or remote client view.

Session bean’s remote interface and remote home interface, if the session bean provides an EJB 2.1
remote client view.

Session bean’s local interface and local home interface, if the session bean provides an EJB 2.1 local
client view.

Session bean’s web service endpoint interface, if any.

Interceptor classes, if any.

The Bean Provider for a session bean that provides a web service client view may also define JAX-WS
message handlers for the bean. The requirements for such message handlers are defined in See Web
Services for Java EE and See Java™ API for XML-based Web Service.

4.9.2. Session Bean Class

The following are the requirements for the session bean class:

The class must be defined as public, must not be final , and must not be abstract. The class must be a
top level class.

The class must have a public constructor that takes no parameters. The EJB container uses this
constructor to create instances of the session bean class.

The class must not define the finalize() method.

The class must implement the bean’s business interface(s) or the methods of the bean’s business
interface(s), if any.

The class must implement the business methods of the bean’s EJB 2.1 client view interfaces, if any. 35

Optionally:

The class may have an additional constructor annotated with the Inject annotation (see See

4.9. The Responsibilities of the Bean Provider

DRAFT Jakarta Enterprise Beans, Core Features 95

#a10253
Ejb.html#a9879
Ejb.html#a9879
Ejb.html#a9881
#a10254
Ejb.html#a195

Relationship to Contexts and Dependency Injection (CDI) Specification and the CDI specification See
Contexts and Dependency Injection for).

The class may implement, directly or indirectly, the javax.ejb.SessionBean interface.36

If the class is a stateful session bean, it may implement the javax.ejb.SessionSynchronization interface
or use one or more of the session synchronization annotations.

The class may implement the session bean’s web service endpoint or component interface.

If the class is a stateless session bean, it may implement the javax.ejb.TimedObject interface. See See
Timer Service.

The class may implement the ejbCreate method(s).

The session bean class may have superclasses and/or superinterfaces. If the session bean has
superclasses, the business methods, lifecycle callback interceptor methods, the timeout callback
methods, the methods implementing the optional session synchronization notifications, the Init or
ejbCreate <METHOD> methods, the Remove methods, and the methods of the SessionBean interface
may be defined in the session bean class or in any of its superclasses.

The session bean class is allowed to implement other methods (for example helper methods invoked
internally by the business methods) in addition to the methods required by the EJB specification.

4.9.2.1. Session Bean Superclasses

A session bean class is permitted to have superclasses that are themselves session bean classes.
However, there are no special rules that apply to the processing of annotations or the deployment
descriptor for this case. For the purposes of processing a particular session bean class, all superclass
processing is identical regardless of whether the superclasses are themselves session bean classes. In
this regard, the use of session bean classes as superclasses merely represents a convenient use of
implementation inheritance, but does not have component inheritance semantics.

For example, the client views exposed by a particular session bean are not inherited by a subclass that
also happens to define a session bean.

@Stateless

public class A implements Foo \{ … }

@Stateless

public class B extends A implements Bar \{ … }

Assuming Foo and Bar are local business interfaces and there is no associated deployment descriptor,
session bean A exposes local business interface Foo and session bean B exposes local business interface
Bar, but not Foo.

4.9. The Responsibilities of the Bean Provider

96 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a195
Ejb.html#a9888
Ejb.html#a9888
#a10255
Ejb.html#a5456
Ejb.html#a5456

Session bean B would need to explicitly include Foo in its set of exposed views for that interface to
apply. For example:

@Stateless

public class A implements Foo \{ … }

@Stateless

public class B extends A implements Foo, Bar \{ … }

4.9.3. Lifecycle Callback Interceptor Methods

The AroundConstruct, PostConstruct , PreDestroy , PrePassivate , and PostActivate lifecycle callback
interceptor methods may be defined for session beans. If the PrePassivate or PostActivate lifecycle
callbacks are defined for stateless session beans or singleton session beans, they are ignored.37

The AroundConstruct lifecycle callback interceptor method may be defined on an interceptor class
only. All other lifecycle callback interceptor methods may be defined on the bean class and/or on an
interceptor class of the bean. Rules applying to the definition of lifecycle callback interceptor methods
are defined in Section See Interceptors for LifeCycle Event Callbacks .

If the PostConstruct lifecycle callback interceptor method is the ejbCreate method, if the PreDestroy
lifecycle callback interceptor method is the ejbRemove method, if the PostActivate lifecycle callback
interceptor method is the ejbActivate method, or if the PrePassivate lifecycle callback interceptor
method is the ejbPassivate method, these callback methods must be implemented on the bean class
itself (or on its superclasses). Except for these cases, the method names can be arbitrary, but must not
start with “ejb” to avoid conflicts with the callback methods defined by the javax.ejb.EnterpriseBean
interfaces.

4.9.4. Session Synchronization Methods

The bean class (or superclass) of a stateful session bean may use one or more of the session
synchronization annotations AfterBegin, BeforeCompletion, and AfterCompletion. Each bean has at
most one session synchronization method for each of the three annotation types. In the case of method
overriding of session synchronization methods declared by annotations, the most derived method
takes precedence. The signatures of the session synchronization methods must follow these rules:

The method must not be declared as final or static.

The method may have any access type: public, private, protected, or package-level.

The return type must be void.

The AfterBegin and BeforeCompletion methods must take 0 arguments.

The AfterCompletion method must take a single argument of type boolean.

4.9. The Responsibilities of the Bean Provider

DRAFT Jakarta Enterprise Beans, Core Features 97

#a10256
Ejb.html#a2023

4.9.5. ejbCreate<METHOD> Methods

The session bean class of a session bean that has a home interface may define one or more
ejbCreate<METHOD> methods. These ejbCreate methods are intended for use only with components
written to the the EJB 2.1 and earlier APIs. The signatures of the ejbCreate methods must follow these
rules:

The method name must have ejbCreate as its prefix.

The method must be declared as public.

The method must not be declared as final or static.

The return type must be void.

The method arguments must be legal types for RMI/IIOP if there is a create<METHOD> corresponding
to the ejbCreate<METHOD> method on the session bean’s remote home interface.

A stateless session bean may define only a single ejbCreate method, with no arguments.

The throws clause may define arbitrary application exceptions, possibly including the
javax.ejb.CreateException.

EJB 1.0 allowed the ejbCreate method to throw the java.rmi.RemoteException to indicate a non-
application exception. This practice was deprecated in EJB 1.1—an EJB 1.1 or EJB 2.0 or later compliant
enterprise bean should throw the javax.ejb.EJBException or another RuntimeException to indicate non-
application exceptions to the container (see Section See System Exceptions). An EJB 2.0 and later
compliant enterprise bean should not throw the java.rmi.RemoteException from the ejbCreate method
.

4.9.6. Business Methods

The session bean class may define zero or more business methods whose signatures must follow these
rules:

The method names can be arbitrary, but they must not start with “ejb” to avoid conflicts with the
callback methods used by the EJB architecture.

The method must be declared as public.

The method must not be declared as final or static.

The argument and return value types for the method must be legal types for RMI/IIOP if the method
corresponds to a business method on the session bean’s remote business interface or remote
component interface.

The argument and return value types for a method must be legal types for JAX-WS if the method is a
web service method or corresponds to a method on the session bean’s web service endpoint.

4.9. The Responsibilities of the Bean Provider

98 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a2986

The throws clause may define arbitrary application exceptions.

Note: Callback methods are permitted to have public access type. This raises the question of whether a
callback method can also be exposed as a business method through one or more client views. Doing so
is not prohibited, but should be done with caution. The runtime context (e.g. transaction context, caller
principal, operations allowed, etc.) for a method invoked as a callback can differ significantly from the
context for the same method when invoked via a client invocation. As a general rule, callback methods
should not be exposed as business methods. Therefore, it is recommended that all non-business
methods be assigned an access type other than public.

EJB 1.0 allowed the business methods to throw the java.rmi.RemoteException to indicate a non-
application exception. This practice was deprecated in EJB 1.1—an EJB 1.1 or EJB 2.0 or later compliant
enterprise bean should throw the javax.ejb.EJBException or another RuntimeException to indicate non-
application exceptions to the container (see Section See System Exceptions). An EJB 2.0 or later
compliant enterprise bean should not throw the java.rmi.RemoteException from a business method.

4.9.7. Session Bean’s Business Interface

The following are the requirements for the session bean’s business interface:

The interface must not extend the javax.ejb.EJBObject or javax.ejb.EJBLocalObject interface.

If the business interface is a remote business interface, the argument and return values must be of
valid types for RMI/IIOP. The remote business interface is not required or expected to be a
java.rmi.Remote interface. The throws clause should not include the java.rmi.RemoteException. The
methods of the business interface may only throw the java.rmi.RemoteException if the interface
extends java.rmi.Remote .

The interface is allowed to have superinterfaces.

If the interface is a remote business interface, its methods must not expose local interface types, timers
or timer handles as arguments or results.

The same business interface cannot be both a local and a remote business interface of the bean.38

The bean class must implement the interface or the interface must be designated as a local or remote
business interface of the bean by means of the Local or Remote annotation or in the deployment
descriptor. The following rules apply to the interfaces implemented by the bean class:

 java.io.Serializable ,
java.io.Externalizable and the interfaces defined by the _javax.ejb_
package are excluded when determining whether the bean class has
business interfaces.

All business interfaces must be explicitly designated as such if any of the following is true:

4.9. The Responsibilities of the Bean Provider

DRAFT Jakarta Enterprise Beans, Core Features 99

Ejb.html#a2986
#a10257

the bean exposes a no-interface view

any interface of the bean class is explicitly designated as a business interface of the bean by either of
the following means:

using the Local or Remote annotation with a non-empty value on the bean class

using the Local or Remote annotation on the interface

in the deployment descriptor

Otherwise:

If the bean class is annotated with the Remote annotation, all implemented interfaces (excluding the
interfaces listed above) are assumed to be remote business interfaces of the bean.

If the bean class is annotated with the Local annotation, or if the bean class is annotated with neither
the Local nor the Remote annotation, all implemented interfaces (excluding the interfaces listed above)
are assumed to be local business interfaces of the bean.

Note that while it is expected that the bean class will typically implement its business interface(s), if
the bean class uses annotations or the deployment descriptor to designate its business interface(s), it is
not required that the bean class also be specified as implementing the interface(s).

The following examples assume that there is no deployment descriptor associated with the bean and
neither the Local nor the Remote annotation is specified on the bean class or an interface unless noted.

Example 1: session bean A exposes two local business interfaces, Foo and Bar:

public interface Foo \{ … }

public interface Bar \{ … }

@Stateless

public class A implements Foo, Bar \{ … }

Example 2: session bean A exposes two local business interfaces, Foo and Bar:

public interface Foo \{ … }

public interface Bar \{ … }

@Local

@Stateless

public class A implements Foo, Bar \{ … }

4.9. The Responsibilities of the Bean Provider

100 Jakarta Enterprise Beans, Core Features DRAFT

Example 3: session bean A exposes two remote business interfaces, Foo and Bar

public interface Foo \{ … }

public interface Bar \{ … }

@Remote

@Stateless

public class A implements Foo, Bar \{ … }

Example 4: session bean A exposes only one remote business interface Foo

@Remote

public interface Foo \{ … }

public interface Bar \{ … }

@Stateless

public class A implements Foo, Bar \{ … }

Example 5: session bean A exposes only one remote business interface Foo

public interface Foo \{ … }

public interface Bar \{ … }

@Remote(Foo.class)

@Stateless

public class A implements Foo, Bar \{ … }

4.9.8. Session Bean’s No-Interface View

The following are the requirements for a session bean that exposes a no-interface view:

The bean class must designate that it exposes a no-interface view via its bean class definition or in the
deployment descriptor. The following rules apply:

If the bean does not expose any other client views (local, remote, no-interface, 2.x Remote Home, 2.x
Local Home, Web Service) and its implements clause is empty, the bean defines a no-interface view.

If the bean exposes at least one other client view, the bean designates that it exposes a no-interface
view by means of the LocalBean annotation on the bean class or in the deployment descriptor.

The following interfaces are excluded when determining whether the bean exposes a no-interface

4.9. The Responsibilities of the Bean Provider

DRAFT Jakarta Enterprise Beans, Core Features 101

view: java.io.Serializable ; java.io.Externalizable ; any of the interfaces defined by the javax.ejb package.

All non-static public methods of the bean class and of any superclasses except java.lang.Object are
exposed as business methods through the no-interface view.

Note: This includes callback methods. The Bean Provider should exercise caution when choosing to
expose callback methods as business methods through the no-interface view. The runtime context (e.g.
transaction context, caller principal, operations allowed, etc.) for a method invoked as a callback can
differ significantly from the context for the same method when invoked via a client invocation. In
general, callback methods should not be exposed as business methods. Therefore, it is recommended
that all non-business methods be assigned an access type other than public.

The throws clause of a bean class method exposed through the no-interface view must not include the
java.rmi.RemoteException.

Only private methods of the bean class and any superclasses except java.lang.Object may be declared
final.

4.9.9. Session Bean’s Remote Component Interface

The following are the requirements for the session bean’s remote component interface:

The interface must extend the javax.ejb.EJBObject interface.

The methods defined in this interface must follow the rules for RMI/IIOP. This means that their
argument and return values must be of valid types for RMI/IIOP, and their throws clauses must include
the java.rmi.RemoteException.

The remote component interface is allowed to have superinterfaces. Use of interface inheritance is
subject to the RMI/IIOP rules for the definition of remote interfaces.

For each method defined in the remote component interface, there must be a matching method in the
session bean’s class. The matching method must have:

The same name.

The same number and types of arguments, and the same return type.

All the exceptions defined in the throws clause of the matching method of the session bean class must
be defined in the throws clause of the method of the remote component interface.

The remote component interface methods must not expose local component interface types, local
home interface types, timers or timer handles as arguments or results.

4.9.10. Session Bean’s Remote Home Interface

The following are the requirements for the session bean’s remote home interface:

4.9. The Responsibilities of the Bean Provider

102 Jakarta Enterprise Beans, Core Features DRAFT

The interface must extend the javax.ejb.EJBHome interface.

The methods defined in this interface must follow the rules for RMI/IIOP. This means that their
argument and return values must be of valid types for RMI/IIOP, and that their throws clauses must
include the java.rmi.RemoteException.

The remote home interface is allowed to have superinterfaces. Use of interface inheritance is subject to
the RMI/IIOP rules for the definition of remote interfaces.

A session bean’s remote home interface must define one or more create<METHOD> methods. A
stateless session bean must define exactly one create method with no arguments.

Each create method of a stateful session bean must be named create<METHOD> , and it must match
one of the Init methods or ejbCreate<METHOD> methods defined in the session bean class. The
matching Init method or ejbCreate<METHOD> method must have the same number and types of
arguments. (Note that the return type is different.) The create method for a stateless session bean must
be named “ create ” but need not have a matching “ ejbCreate ” method.

The return type for a create <METHOD> method must be the session bean’s remote component
interface type.

All the exceptions defined in the throws clause of an ejbCreate <METHOD> method of the session bean
class must be defined in the throws clause of the matching create <METHOD> method of the remote
home interface.

The throws clause must include javax.ejb.CreateException.

4.9.11. Session Bean’s Local Component Interface

The following are the requirements for the session bean’s local component interface:

The interface must extend the javax.ejb.EJBLocalObject interface.

The throws clause of a method defined in the local interface must not include the
java.rmi.RemoteException.

The local component interface is allowed to have superinterfaces.

For each method defined in the local component interface, there must be a matching method in the
session bean’s class. The matching method must have:

The same name.

The same number and types of arguments, and the same return type.

All the exceptions defined in the throws clause of the matching method of the session bean class must
be defined in the throws clause of the method of the local component interface.

4.9. The Responsibilities of the Bean Provider

DRAFT Jakarta Enterprise Beans, Core Features 103

4.9.12. Session Bean’s Local Home Interface

The following are the requirements for the session bean’s local home interface:

The interface must extend the javax.ejb.EJBLocalHome interface.

The throws clause of a method in the local home interface must not include the
java.rmi.RemoteException.

The local home interface is allowed to have superinterfaces.

A session bean’s local home interface must define one or more create<METHOD> methods. A stateless
session bean must define exactly one create method with no arguments.

Each create method of a stateful session bean must be named create<METHOD> , and it must match
one of the Init methods or ejbCreate<METHOD> methods defined in the session bean class. The
matching Init method or ejbCreate<METHOD> method must have the same number and types of
arguments. (Note that the return type is different.) The create method for a stateless session bean must
be named “ create ” but need not have a matching “ ejbCreate ” method.

The return type for a create <METHOD> method must be the session bean’s local component interface
type.

All the exceptions defined in the throws clause of an ejbCreate <METHOD> method of the session bean
class must be defined in the throws clause of the matching create <METHOD> method of the local home
interface.

The throws clause must include javax.ejb.CreateException.

4.9.13. Session Bean’s Web Service Endpoint Interface

The EJB 3.x API does not require the definition of a web service endpoint interface for session beans
that implement a web service endpoint.

The JAX-WS and Web Services for Java EE specifications do not require that a separate interface be
defined for a web service endpoint. The requirements for web service endpoints under JAX-WS and
Web Services for Java EE are given in See Java™ API for XML-based Web Service and See Web Services
for Java EE.

4.10. The Responsibilities of the Container Provider
This section describes the responsibilities of the Container Provider to support a session bean. The
Container Provider is responsible for providing the deployment tools and for managing the session
bean instances at runtime.

Because the EJB specification does not define the API between deployment tools and the container, we
assume that the deployment tools are provided by the Container Provider. Alternatively, the

4.10. The Responsibilities of the Container Provider

104 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9881
Ejb.html#a9879
Ejb.html#a9879

deployment tools may be provided by a different vendor who uses the container vendor’s specific API.

4.10.1. Generation of Implementation Classes

The deployment tools provided by the container are responsible for the generation of additional
classes when the session bean is deployed. The tools obtain the information that they need for
generation of the additional classes by introspecting the classes and interfaces provided by the Bean
Provider and by examining the session bean’s deployment descriptor.

The deployment tools must generate the following classes:

A class that implements the session bean’s business interface.

A class that implements the session bean’s no-interface view.

A class that implements the session bean’s remote home interface (session EJBHome class).

A class that implements the session bean’s remote component interface (session EJBObject class).

A class that implements the session bean’s local home interface (session EJBLocalHome class).

A class that implements the session bean’s local component interface (session EJBLocalObject class).

A class that implements the session bean’s web service endpoint.

A class that implements the return value of an asynchronous method with return type Future<V> .

The deployment tools may also generate a class that mixes some container-specific code with the
session bean class. This code may, for example, help the container to manage the bean instances at
runtime. The tools can use subclassing, delegation, and code generation.

The deployment tools may also allow the generation of additional code that wraps the business
methods and is used to customize the business logic to an existing operational environment. For
example, a wrapper for a debit function on the AccountManager bean may check that the debited
amount does not exceed a certain limit.

4.10.2. Generation of WSDL

Reference See Web describes the generation of a WSDL document for a web service endpoint. The Java
to WSDL mapping must adhere to the requirements of JAX-WS See Java™ API for XML-based Web
Service.

4.10.3. Session Business Interface Implementation Class

The container’s implementation of the session business interface, which is generated by the
deployment tools, implements the business methods specific to the session bean.

The implementation of each business method must activate the instance (if the instance is in the

4.10. The Responsibilities of the Container Provider

DRAFT Jakarta Enterprise Beans, Core Features 105

Ejb.html#a9879
Ejb.html#a9881
Ejb.html#a9881

passive state), invoke any business method interceptor methods, and invoke the matching business
method on the instance.

The Container Provider is responsible for providing the implementation of the equals and hashCode
methods for the business interface, in conformance with the requirements of section See Session
Object Identity.

4.10.4. No-Interface View Reference Class

The container’s implementation of the no-interface view reference, which is generated by the
deployment tools, implements the business methods that are exposed to the no-interface view client.

The implementation of each business method must activate the instance (if the instance is in the
passive state), invoke any business method interceptor methods, and invoke the matching business
method on the instance.

The Container Provider is responsible for providing the implementation of the equals and hashCode
methods for the no-interface view reference class, in conformance with the requirements of section
See Client view of Session Object’s Life Cycle.

4.10.5. Session EJBHome Class

The session EJBHome class, which is generated by the deployment tools, implements the session bean’s
remote home interface. This class implements the methods of the javax.ejb.EJBHome interface and the
create<METHOD> methods specific to the session bean.

The implementation of each create<METHOD> method invokes a matching ejbCreate<METHOD>
method.

4.10.6. Session EJBObject Class

The session EJBObject class, which is generated by the deployment tools, implements the session bean’s
remote component interface. It implements the methods of the javax.ejb.EJBObject interface and the
business methods specific to the session bean.

The implementation of each business method must activate the instance (if the instance is in the
passive state), invoke any business method interceptor methods, and invoke the matching business
method on the instance.

4.10.7. Session EJBLocalHome Class

The session EJBLocalHome class, which is generated by the deployment tools, implements the session
bean’s local home interface. This class implements the methods of the javax.ejb.EJBLocalHome
interface and the create<METHOD> methods specific to the session bean.

The implementation of each create<METHOD> method invokes a matching ejbCreate<METHOD>

4.10. The Responsibilities of the Container Provider

106 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a342
Ejb.html#a342
Ejb.html#a519

method.

4.10.8. Session EJBLocalObject Class

The session EJBLocalObject class, which is generated by the deployment tools, implements the session
bean’s local component interface. It implements the methods of the javax.ejb.EJBLocalObject interface
and the business methods specific to the session bean.

The implementation of each business method must activate the instance (if the instance is in the
passive state), invoke any business method interceptor methods, and invoke the matching business
method on the instance.

4.10.9. Web Service Endpoint Implementation Class

The implementation class for a stateless session bean’s web service endpoint is generated by the
container’s deployment tools. This class must handle requests to the web service endpoint, unmarshall
the SOAP request, invoke any business method interceptor methods, and invoke the stateless session
bean method that matches the web service endpoint method that corresponds to the request.

4.10.10. Asynchronous Client Future<V> Return Value Implementation Class

The object returned from an asynchronous method with return type Future<V> is implemented by the
container’s deployment tools.

4.10.11. Handle Classes

The deployment tools are responsible for implementing the handle classes for the session bean’s
remote home and remote component interfaces.

4.10.12. EJBMetaData Class

The deployment tools are responsible for implementing the class that provides metadata to the remote
client view contract. The class must be a valid RMI Value class and must implement the
javax.ejb.EJBMetaData interface.

4.10.13. Non-reentrant Instances

The container must ensure that only one thread can be executing a stateless or stateful session bean
instance at any time. Therefore, stateful and stateless session beans do not have to be coded as
reentrant. One implication of this rule is that an application cannot make loopback calls to a stateless
or stateful session bean instance.

4.10.14. Transaction Scoping, Security, Exceptions

The container must follow the rules with respect to transaction scoping, security checking, and
exception handling, as described in Chapters See Support for Transactions, See Security Management,

4.10. The Responsibilities of the Container Provider

DRAFT Jakarta Enterprise Beans, Core Features 107

Ejb.html#a2172
Ejb.html#a4945

and See Exception Handling, respectively.

4.10.15. JAX-WS Message Handlers for Web Service Endpoints

The container must support the use of JAX-WS message handlers for web service endpoints. Container
requirements for support of message handlers are specified in See Java™ API for XML-based Web
Service and See Web Services for Java EE.

If message handlers are present, they must be invoked before any business method interceptor
methods.

4.10.16. SessionContext

The container must implement the SessionContext.getEJBObject method such that the bean instance
can use the Java language cast to convert the returned value to the session bean’s remote component
interface type. Specifically, the bean instance does not have to use the PortableRemoteObject.narrow
method for the type conversion.

The container must implement the EJBContext.lookup method such that when the lookup method is
used to look up a bean’s remote home interface, a bean instance can use the Java language cast to
convert the returned value to a session bean’s remote home interface type. Specifically, the bean
instance does not have to use the PortableRemoteObject.narrow method for the type conversion.

4.10. The Responsibilities of the Container Provider

108 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a2940
Ejb.html#a9881
Ejb.html#a9881
Ejb.html#a9879

Chapter 5. Message-Driven Bean Component
Contract
This chapter specifies the contract between a message-driven bean and its container. It defines the life
cycle of the message-driven bean instances.

This chapter defines the developer’s view of message-driven bean state management and the
container’s responsibility for managing message-driven bean state.

5.1. Overview
A message-driven bean is an asynchronous message consumer. A message-driven bean is invoked by
the container as a result of the arrival of a message at the destination or endpoint that is serviced by
the message-driven bean. A message-driven bean instance is an instance of a message-driven bean
class. A message-driven bean is defined for a single messaging type, in accordance with the message
listener interface it employs.

To a client, a message-driven bean is a message consumer that implements some business logic
running on the server. A client accesses a message-driven bean by sending messages to the destination
or endpoint for which the message-driven bean class is the message listener.

Message-driven beans are anonymous. They have no client-visible identity.

Message-driven bean instances have no conversational state. This means that all bean instances are
equivalent when they are not involved in servicing a client message.

A message-driven bean instance is created by the container to handle the processing of the messages
for which the message-driven bean is the consumer. Its lifetime is controlled by the container.

A message-driven bean instance has no state for a specific client. However, the instance variables of
the message-driven bean instance can contain state across the handling of client messages. Examples
of such state include an open database connection and a reference to an enterprise bean.

5.2. Goals
The goal of the message-driven bean model is to make developing an enterprise bean that is
asynchronously invoked to handle the processing of incoming messages as simple as developing the
same functionality in any other message listener.

A further goal of the message-driven bean model is to allow for the concurrent processing of a stream
of messages by means of container-provided pooling of message-driven bean instances.

5.1. Overview

DRAFT Jakarta Enterprise Beans, Core Features 109

5.3. Client View of a Message-Driven Bean
To a client, a message-driven bean is simply a message consumer. The client sends messages to the
destination or endpoint for which the message-driven bean is the message listener just as it would to
any other destination or endpoint. The message-driven bean, as a message consumer, handles the
processing of the messages.

From the perspective of the client, the existence of a message-driven bean is completely hidden behind
the destination or endpoint for which the message-driven bean is the message listener. The following
diagram illustrates the view that is provided to a message-driven bean’s clients.

===

Client view of Message-Driven Beans Deployed in a Container

A client’s JNDI name space may be configured to include the destinations or endpoints of message-
driven beans installed in multiple EJB containers located on multiple machines on a network. The
actual locations of an enterprise bean and EJB container are, in general, transparent to the client using
the enterprise bean.

References to message destinations can be injected, or they can be looked up in the client’s JNDI
namespace.

For example, the reference to the queue for a JMS message-driven bean might be injected as follows.

5.3. Client View of a Message-Driven Bean

110 Jakarta Enterprise Beans, Core Features DRAFT

@Resource Queue stockInfoQueue;

Alternatively, the queue for the StockInfo JMS message-driven bean might be located using the
following code segment:

Context initialContext = new InitialContext();

Queue stockInfoQueue = (javax.jms.Queue)initialContext.lookup
(“java:comp/env/jms/stockInfoQueue”);

The remainder of this chapter describes the message-driven bean life cycle in detail and the protocol
between the message-driven bean and its container.

5.4. Protocol Between a Message-Driven Bean Instance
and its Container
From its creation until destruction, a message-driven bean instance lives in a container. The container
provides security, concurrency, transactions, and other services for the message-driven bean. The
container manages the life cycle of the message-driven bean instances, notifying the instances when
bean action may be necessary, and providing a full range of services to ensure that the message-driven
bean implementation is scalable and can support the concurrent processing of a large number of
messages.

From the Bean Provider’s point of view, a message-driven bean exists as long as its container does. It is
the container’s responsibility to ensure that the message-driven bean comes into existence when the
container is started up and that instances of the bean are ready to receive asynchronous message
delivery before the delivery of messages is started.

Containers themselves make no actual service demands on the message-driven bean instances. The
calls a container makes on a bean instance provide it with access to container services and deliver
notifications issued by the container.

Since all instances of a message-driven bean are equivalent, a client message can be delivered to any
available instance.

5.4.1. Required MessageDrivenBean Metadata

A message-driven bean must be annotated with the MessageDriven annotation or denoted in the
deployment descriptor as a message-driven bean. The MessageDriven annotation is a component-
defining annotation and is applied to the bean class.

5.4.2. The Required Message Listener Interface

The message-driven bean class must implement the appropriate message listener interface for the
messaging type that the message-driven bean supports or specify the message listener interface using
the MessageDriven metadata annotation or the messaging-type deployment descriptor element. The

5.4. Protocol Between a Message-Driven Bean Instance and its Container

DRAFT Jakarta Enterprise Beans, Core Features 111

specific message listener interface that is implemented by a message-driven bean class distinguishes
the messaging type that the message-driven bean supports.

The message-driven bean class’s implementation of the javax.jms.MessageListener interface
distinguishes the message-driven bean as a JMS message-driven bean.

The bean’s message listener method (e.g., onMessage in the case of javax.jms.MessageListener) is called
by the container when a message has arrived for the bean to service. The message listener method
contains the business logic that handles the processing of the message.

A bean’s message listener interface may define more than one message listener method. If the message
listener interface contains more than one method, it is the resource adapter that determines which
method is invoked. See See Java EE™ Connector Architecture.

If the message-driven bean class implements more than one interface other than java.io.Serializable ,
java.io.Externalizable , or any of the interfaces defined by the javax.ejb package, the message listener
interface must be specified by the messageListenerInterface element of the MessageDriven annotation
or the messaging-type element of the message-driven deployment descriptor element.

5.4.3. Message-Driven Bean with No-Methods Listener Interface

A message-driven bean is permitted to implement a listener interface with no methods. A bean that
implements a no-methods interface, exposes all non-static public methods of the bean class and of any
superclasses except java.lang.Object as message listener methods.

In this case, when requested by a resource adapter, the container provides a proxy which implements
the message listener interface and all message listener methods of the bean. A resource adapter may
use the Reflection API to invoke a message listener method on such a proxy. When the resource
adapter invokes a method on the proxy, the message listener method on the bean instance and any
interceptor methods are invoked as needed. The resource adapter determines which message listener
method is invoked according to its implementation logic.

Only public methods of the bean class and of any superclasses except java.lang.Object may be invoked
by a resource adapter. Attempted invocations of methods with any other access modifiers on a proxy
provided by the container must result in the javax.ejb.EJBException.

5.4.4. Dependency Injection

A message-driven bean may use dependency injection mechanisms to acquire references to resources
or other objects in its environment (see See Enterprise Bean Environment). If a message-driven bean
makes use of dependency injection, the container injects these references after the bean instance is
created, and before any message-listener methods are invoked on the bean instance. If a dependency
on the MessageDrivenContext is declared, or if the bean class implements the optional
MessageDrivenBean interface (see Section See The Optional MessageDrivenBean Interface), the
MessageDrivenContext is also injected at this time. If dependency injection fails, the bean instance is
discarded.

5.4. Protocol Between a Message-Driven Bean Instance and its Container

112 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9863
Ejb.html#a3613
Ejb.html#a1772

Under the EJB 3.x API, the bean class may acquire the MessageDrivenContext interface through
dependency injection without having to implement the MessageDrivenBean interface. In this case, the
Resource annotation (or resource-env-ref deployment descriptor element) is used to denote the bean’s
dependency on the MessageDrivenContext . See See Enterprise Bean Environment.

5.4.5. The MessageDrivenContext Interface

If the bean specifies a dependency on the MessageDrivenContext interface (or if the bean class
implements the MessageDrivenBean interface), the container must provide the message-driven bean
instance with a MessageDrivenContext . This gives the message-driven bean instance access to the
instance’s context maintained by the container. The MessageDrivenContext interface has the following
methods:

The setRollbackOnly method allows the instance to mark the current transaction such that the only
outcome of the transaction is a rollback. Only instances of a message-driven bean with container-
managed transaction demarcation can use this method.

The getRollbackOnly method allows the instance to test if the current transaction has been marked for
rollback. Only instances of a message-driven bean with container-managed transaction demarcation
can use this method.

The getUserTransaction method returns the javax.transaction.UserTransaction interface that the
instance can use to demarcate transactions, and to obtain transaction status. Only instances of a
message-driven bean with bean-managed transaction demarcation can use this method.

The getTimerService method returns the javax.ejb.TimerService interface.

The getCallerPrincipal method returns the java.security.Principal that is associated with the invocation.

The isCallerInRole method is inherited from the EJBContext interface.

The getEJBHome and getEJBLocalHome methods are inherited from the EJBContext interface. Message-
driven bean instances must not call these methods.

The lookup method enables the message-driven bean to look up its environment entries in the JNDI
naming context.

The getContextData method enables a message listener method, lifecycle callback method, or timeout
method to retrieve or update the interceptor context data associated with its invocation.

5.4.6. Message-Driven Bean Lifecycle Callback Interceptor Methods

The following lifecycle event callbacks are supported for message-driven beans.

AroundConstruct

5.4. Protocol Between a Message-Driven Bean Instance and its Container

DRAFT Jakarta Enterprise Beans, Core Features 113

Ejb.html#a3613

PostConstruct

PreDestroy

The PostConstruct and PreDestroy callback methods may be defined directly on the bean class or on a
separate interceptor class39. The AroundConstruct lifecycle callback interceptor method, if used, must
be defined on an interceptor class (see See Interceptors). See See Lifecycle Callback Interceptor
Methods.

The PostConstruct callback occurs before the first message listener method invocation on the bean.
This is at a point after which any dependency injection has been performed by the container.

The PostConstruct lifecycle callback interceptor method executes in an unspecified transaction and
security context.

The PreDestroy callback occurs at the time the bean is removed from the pool or destroyed.

The PreDestroy lifecycle callback interceptor method executes in an unspecified transaction and
security context.

5.4.7. The Optional MessageDrivenBean Interface

The message-driven bean class is not required to implement the javax.ejb.MessageDrivenBean
interface.

 _The MessageDrivenBean interface was
required by earlier versions of the Enterprise JavaBeans specification.
Under the EJB 3.x API, the functionality previously provided by the
MessageDrivenBean interface is available to the bean class through the
use of dependency injection (of the MessageDrivenContext) and optional
lifecycle callback methods._

The MessageDrivenBean interface defines two methods, setMessageDrivenContext and ejbRemove .

The setMessageDrivenContext method is called by the bean’s container to associate a message-driven
bean instance with its context maintained by the container. Typically a message-driven bean instance
retains its message-driven context as part of its state.

The ejbRemove notification signals that the instance is in the process of being removed by the
container. In the ejbRemove method, the instance releases the resources that it is holding.

Under the EJB 3.x API, the bean class may optionally define a PreDestroy callback method for
notification of the container’s removal of the bean instance.

5.4. Protocol Between a Message-Driven Bean Instance and its Container

114 Jakarta Enterprise Beans, Core Features DRAFT

#a10258
Ejb.html#a9887
Ejb.html#a1979
Ejb.html#a1979

This specification requires that the ejbRemove and the ejbCreate methods of a message-driven bean be
treated as the PreDestroy and PostConstruct lifecycle callback methods, respectively. If the message-
driven bean implements the MessageDrivenBean interface, the PreDestroy annotation can only be
applied to the ejbRemove method. Similar requirements apply to use of deployment descriptor
metadata as an alternative to the use of annotations.

5.4.8. Timeout Callbacks

A message-driven bean can be registered with the EJB Timer Service for time-based event notifications.
The container invokes the appropriate bean instance timeout callback method when a timer for the
bean has expired. See See Timer Service.

5.4.9. Message-Driven Bean Creation

Except as noted below, the container creates an instance of a message-driven bean in three steps. First,
the container calls the bean class constructor to create a new message-driven bean instance. Second,
the container injects the bean’s MessageDrivenContext , if applicable, and performs any other
dependency injection as specified by metadata annotations on the bean class or by the deployment
descriptor. Third, the container calls the instance’s PostConstruct lifecycle callback methods, if any. See
See Lifecycle Callback Interceptor Methods.

If an interceptor associated with the message-driven bean declares an AroundConstruct lifecycle
callback interceptor method, the container follows the rules for the AroundConstruct interceptors
defined in the Interceptors specification See Interceptors.

EJB 2.1 required the message-driven bean class to implement the ejbCreate method. This requirement
has been removed from the EJB 3.x API. If the message-driven bean class implements the ejbCreate
method, the ejbCreate method is treated as the bean’s PostConstruct method, and the PostConstruct
annotation can only be applied to the ejbCreate method.

5.4.10. Message Listener Interceptor Methods for Message-Driven Beans

 AroundInvoke interceptor methods are
supported for message-driven beans. These interceptor methods may be
defined on the bean class or on a interceptor class and apply to the
handling of the invocation of the bean’s message listener method(s).

Interceptors are described in See Interceptors.

5.4.11. Serializing Message-Driven Bean Methods

The container serializes calls to each message-driven bean instance. Most containers will support
many instances of a message-driven bean executing concurrently; however, each instance sees only a
serialized sequence of method calls. Therefore, a message-driven bean does not have to be coded as
reentrant.

5.4. Protocol Between a Message-Driven Bean Instance and its Container

DRAFT Jakarta Enterprise Beans, Core Features 115

Ejb.html#a5456
Ejb.html#a1979
Ejb.html#a9887
Ejb.html#a2004

The container must serialize all the container-invoked callbacks (e.g., lifecycle callback interceptor
methods and timeout callback methods), and it must serialize these callbacks with the message listener
method calls.

5.4.12. Concurrency of Message Processing

A container allows many instances of a message-driven bean class to be executing concurrently, thus
allowing for the concurrent processing of a stream of messages. No guarantees are made as to the
exact order in which messages are delivered to the instances of the message-driven bean class,
although the container should attempt to deliver messages in order when it does not impair the
concurrency of message processing. Message-driven beans should therefore be prepared to handle
messages that are out of sequence: for example, the message to cancel a reservation may be delivered
before the message to make the reservation.

5.4.13. Transaction Context of Message-Driven Bean Methods

A bean’s message listener and timeout callback methods are invoked in the scope of a transaction
determined by the transaction attribute specified in the bean’s metadata annotations or deployment
descriptor. If the bean is specified as using container-managed transaction demarcation, either the
REQUIRED or the NOT_SUPPORTED transaction attribute must be used for the message listener
methods, and either the REQUIRED , REQUIRES_NEW , or the NOT_SUPPORTED transaction attribute
for timeout callback methods. See See Support for Transactions.

When a message-driven bean using bean-managed transaction demarcation uses the
javax.transaction.UserTransaction interface to demarcate transactions, the message receipt that causes
the bean to be invoked is not part of the transaction. If the message receipt is to be part of the
transaction, container-managed transaction demarcation with the REQUIRED transaction attribute
must be used.

The bean constructor , the setMessageDrivenContext method, the message-driven bean’s dependency
injection methods, and lifecycle callback methods are called with an unspecified transaction context.
Refer to Subsection See Handling of Methods that Run with “an unspecified transaction context” for
how the container executes methods with an unspecified transaction context.

5.4.14. Security Context of Message-Driven Bean Methods

A caller principal may propagate into a message-driven bean’s message listener methods. Whether this
occurs is a function of the specific message-listener interface and associated messaging provider, but is
not governed by this specification.

The Bean Provider can use the RunAs metadata annotation (or corresponding deployment descriptor
element) to define a run-as identity for the enterprise bean. The run-as identity applies to the bean’s
message listener methods and timeout methods. Run-as identity behavior is further defined in section
See Run-as.

5.4. Protocol Between a Message-Driven Bean Instance and its Container

116 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a2172
Ejb.html#a2889
Ejb.html#a5329

5.4.15. Association of a Message-Driven Bean with a Destination or Endpoint

A message-driven bean is associated with a destination or endpoint when the bean is deployed in the
container. It is the responsibility of the Deployer to associate the message-driven bean with a
destination or endpoint.

5.4.16. Activation Configuration Properties

The Bean Provider may provide information to the Deployer about the configuration of the message-
driven bean in its operational environment. This may include information about message
acknowledgement modes, message selectors, expected destination or endpoint types, etc.

Activation configuration properties are specified by means of the activationConfig element of the
MessageDriven annotation or activation-config deployment descriptor element. Activation
configuration properties specified in the deployment descriptor are added to those specified by means
of the MessageDriven annotation. If a property of the same name is specified in both, the deployment
descriptor value overrides the value specified in the annotation.

5.4.17. JMS Message-Driven Beans

This section describes activation configuration properties specific to the JMS message-driven beans.

The container may or may not support its built-in JMS provider using a resource adapter. However, it
must allow the application to configure a message-driven bean that uses the built-in JMS provider
using the activation properties defined by this specification.

Both the container and any JMS resource adapters are free to support activation properties in addition
to those listed here. However, applications that use non-standard activation properties will not be
portable.

5.4.17.1. Message Acknowledgment

JMS message-driven beans should not attempt to use the JMS API for message acknowledgment.
Message acknowledgment is automatically handled by the container. If the message-driven bean uses
container-managed transaction demarcation, message acknowledgment is handled automatically as a
part of the transaction commit. If bean-managed transaction demarcation is used, the message receipt
cannot be part of the bean-managed transaction, and, in this case, the receipt is acknowledged by the
container. If bean-managed transaction demarcation is used, the Bean Provider can indicate whether
JMS AUTO_ACKNOWLEDGE semantics or DUPS_OK_ACKNOWLEDGE semantics should apply by using
the activationConfig element of the MessageDriven annotation or by using the activation-config-
property deployment descriptor element. The property name used to specify the acknowledgment
mode is acknowledgeMode . If the acknowledgeMode property is not specified, JMS
AUTO_ACKNOWLEDGE semantics are assumed. The value of the acknowledgeMode property must be
either Auto-acknowledge or Dups-ok-acknowledge for a JMS message-driven bean.

5.4. Protocol Between a Message-Driven Bean Instance and its Container

DRAFT Jakarta Enterprise Beans, Core Features 117

5.4.17.2. Message Selectors

The Bean Provider may declare the JMS message selector to be used in determining which messages a
JMS message-driven bean is to receive. If the Bean Provider wishes to restrict the messages that a JMS
message-driven bean receives, the Bean Provider can specify the value of the message selector by
using the activationConfig element of the MessageDriven annotation or by using the activation-config-
property deployment descriptor element. The property name used to specify the message selector is
messageSelector .

For example:

@MessageDriven(activationConfig=\{

@ActivationConfigProperty(

propertyName="messageSelector",

 propertyValue="JMSType = ‘car’ AND color =
‘blue’

AND weight > 2500")

})

<activation-config>

<activation-config-property>

<activation-config-property-name>

messageSelector

</activation-config-property-name>

<activation-config-property-value>

 JMSType = ‘car’ AND color = ‘blue’ AND
weight > 2500

</activation-config-property-value>

5.4. Protocol Between a Message-Driven Bean Instance and its Container

118 Jakarta Enterprise Beans, Core Features DRAFT

</activation-config-property>

</activation-config>

The Application Assembler may further restrict, but not replace, the value of the messageSelector
property of a JMS message-driven bean.

5.4.17.3. Destination Type

A JMS message-driven bean is associated with a JMS Destination (Queue or Topic) when the bean is
deployed in the container. It is the responsibility of the Deployer to associate the message-driven bean
with a Queue or Topic.

The Bean Provider may provide advice to the Deployer as to whether a message-driven bean is
intended to be associated with a Queue or a Topic by using the activationConfig element of the
MessageDriven annotation or by using the activation-config-property deployment descriptor element.
The property name used to specify the destination type associated with the bean is destinationType .
The value for this property must be either javax.jms.Queue or javax.jms.Topic for a JMS message-driven
bean.

5.4.17.4. Destination Lookup

The Bean Provider or Deployer may specify the JMS queue or topic from which a JMS message-driven
bean is to receive messages.

The lookup name of an administratively-defined Queue or Topic object may be specified by using the
activationConfig element of the MessageDriven annotation or by using the activation-config-property
deployment descriptor element. The property name used to specify the lookup name is
destinationLookup.

5.4.17.5. Connection Factory Lookup

The Bean Provider or Deployer may specify the JMS connection factory that will be used to connect to
the JMS provider from which a JMS message-driven bean is to receive messages.

The lookup name of an administratively-defined ConnectionFactory object may be specified by using
the activationConfig element of the MessageDriven annotation or by using the activation-config-
property deployment descriptor element. The property name used to specify the lookup name is
connectionFactoryLookup.

5.4.17.6. Subscription Durability

If the message-driven bean is intended to be used with a topic, the Bean Provider may further indicate
whether a durable or non-durable subscription should be used by using the activationConfig element
of the MessageDriven annotation or by using the activation-config-property deployment descriptor
element. The property name used to specify whether a durable or non-durable subscription should be
used is subscriptionDurability . The value for this property must be either Durable or NonDurable for a

5.4. Protocol Between a Message-Driven Bean Instance and its Container

DRAFT Jakarta Enterprise Beans, Core Features 119

JMS message-driven bean. If a topic subscription is specified and subscriptionDurability is not specified,
a non-durable subscription is assumed.

Durable topic subscriptions, as well as queues, ensure that messages are not missed even if the EJB
server is not running. Reliable applications will typically make use of queues or durable topic
subscriptions rather than non-durable topic subscriptions.

If a non-durable topic subscription is used, it is the container’s responsibility to make sure that the
message-driven bean subscription is active (i.e., that there is a message-driven bean available to
service the message) in order to ensure that messages are not missed as long as the EJB server is
running. Messages may be missed, however, when a bean is not available to service them. This will
occur, for example, if the EJB server goes down for any period of time.

The Deployer should avoid associating more than one message-driven bean with the same JMS queue.
If there are multiple JMS consumers for a queue, JMS does not define how messages are distribued
between the queue receivers.

5.4.17.7. Subscription Name

If the message-driven bean is intended to be used with a topic, and the bean provider has indicated
that a durable subscription should be used by specifying the subscriptionDurability property to
Durable, then the bean provider or deployer may specify the name of the durable subscription.

The name of the subscription may be specified by using the activationConfig element of the
MessageDriven annotation or by using the activation-config-property deployment descriptor element.
The property name used to specify the name of the subscription is subscriptionName.

The Bean Provider or Deployer cannot specify whether a shared or unshared subscription will be used.

5.4.17.8. Client Identifier

The Bean Provider or Deployer may specify the JMS client identifier that will be used when connecting
to the JMS provider from which a JMS message-driven bean is to receive messages.

The client identifier may be specified by using the activationConfig element of the MessageDriven
annotation or by using the activation-config-property deployment descriptor element. The property
name used to specify the client identifier is clientId.

5.4.18. Dealing with Exceptions

A message-driven bean’s message listener method must not throw the java.rmi.RemoteException .

Message-driven beans should not, in general, throw RuntimeExceptions .

A RuntimeException that is not an application exception thrown from any method of the message-
driven bean class (including a message listener method and the callbacks invoked by the container)
results in the transition to the “does not exist” state. If a message-driven bean uses bean-managed

5.4. Protocol Between a Message-Driven Bean Instance and its Container

120 Jakarta Enterprise Beans, Core Features DRAFT

transaction demarcation and throws a RuntimeException , the container should not acknowledge the
message. Exception handling is described in detail in Chapter See Exception Handling. See the
Interceptors specification See Interceptors for the rules pertaining to lifecycle callback interceptor
methods when more than one such method applies to the bean class.

From the client perspective, the message consumer continues to exist. If the client continues sending
messages to the destination or endpoint associated with the bean, the container can delegate the
client’s messages to another instance.

The message listener methods of some messaging types may throw application exceptions. An
application exception is propagated by the container to the resource adapter.

5.4.19. Missed PreDestroy Callbacks

The Bean Provider cannot assume that the container will always invoke the PreDestroy callback
method (or ejbRemove method) for a message-driven bean instance. The following scenarios result in
the PreDestroy callback method not being called on an instance:

A crash of the EJB container.

A system exception thrown from the instance’s method to the container.

If the message-driven bean instance allocates resources in the PostConstruct lifecycle callback method
and/or in the message listener method, and releases normally the resources in the PreDestroy method,
these resources will not be automatically released in the above scenarios. The application using the
message-driven bean should provide some clean up mechanism to periodically clean up the
unreleased resources.

5.4.20. Replying to a JMS Message

In standard JMS usage scenarios, the messaging mode of a message’s JMSReplyTo destination (Queue or
Topic) is the same as the mode of the destination to which the message has been sent. Although a
message-driven bean is not directly dependent on the mode of the JMS destination from which it is
consuming messages, it may contain code that depends on the mode of its message’s JMSReplyTo
destination. In particular, if a message-driven bean replies to a message, the mode of the reply’s
message producer and the mode of the JMSReplyTo destination must be the same. In order to
implement a message-driven bean that is independent of JMSReplyTo mode, the Bean Provider should
use instanceOf to test whether a JMSReplyTo destination is a Queue or Topic, and then use a matching
message producer for the reply.

5.5. Message-Driven Bean State Diagram
When a client sends a message to a Destination for which a message-driven bean is the consumer, the
container selects one of its method-ready __ instances and invokes the instance’s message listener
method.

5.5. Message-Driven Bean State Diagram

DRAFT Jakarta Enterprise Beans, Core Features 121

Ejb.html#a2940
Ejb.html#a9887

The following figure illustrates the life cycle of a message-driven bean instance.

===

Life Cycle of a Message-Driven Bean.

The following steps describe the life cycle of a message-driven bean instance:

A message-driven bean instance’s life starts when the container invokes the message-driven bean class
constructor to create a new instance40. Next, the container injects the bean’s MessageDrivenContext
object, if applicable, and performs any other dependency injection as specified by metadata
annotations on the bean class or by the deployment descriptor. The container then calls the bean’s
PostConstruct lifecycle callback methods, if any.

The message-driven bean instance is now ready to be delivered a message sent to its associated
destination or endpoint by any client or a call from the container to a timeout callback method.

When the container no longer needs the instance (which usually happens when the container wants to
reduce the number of instances in the method-ready pool), the container invokes the PreDestroy
lifecycle callback methods for it, if any. This ends the life of the message-driven bean instance.

5.5.1. Operations Allowed in the Methods of a Message-Driven Bean Class

See Operations Allowed in the Methods of a Message-Driven Bean defines the methods of a message-
driven bean class in which the message-driven bean instances can access the methods of the
javax.ejb.MessageDrivenContext interface, the java:comp/env environment naming context, resource
managers, TimerService and Timer methods, the EntityManager and EntityManagerFactory methods,
and other enterprise beans.

If a message-driven bean instance attempts to invoke a method of the MessageDrivenContext interface,

5.5. Message-Driven Bean State Diagram

122 Jakarta Enterprise Beans, Core Features DRAFT

#a10259
Ejb.html#a1886

and the access is not allowed in See Operations Allowed in the Methods of a Message-Driven Bean, the
container must throw and log the java.lang.IllegalStateException.

If a message-driven bean instance attempts to invoke a method of the TimerService or Timer interface,
and the access is not allowed in Table See Operations Allowed in the Methods of a Message-Driven
Bean, the container must throw the java.lang.IllegalStateException .

If a bean instance attempts to access a resource manager, an enterprise bean, or an entity manager or
entity manager factory, and the access is not allowed in See Operations Allowed in the Methods of a
Message-Driven Bean, the behavior is undefined by the EJB specification.

===

Operations Allowed in the Methods of a Message-Driven Bean

Bean method

Bean method can perform the following operations

Container-managed transaction demarcation

Bean-managed transaction demarcation

constructor

-

-

dependency injection methods (e.g., setMessageDrivenContext)

MessageDrivenContext methods: lookup

JNDI access to java:comp/env

MessageDrivenContext methods: lookup

JNDI access to java:comp/env

PostConstruct, PreDestroy lifecycle callback methods

MessageDrivenContext methods: getTimerService , lookup, getContextData

JNDI access to java:comp/env

EntityManagerFactory access

MessageDrivenContext methods:
getUserTransaction, getTimerService , lookup, getContextData

5.5. Message-Driven Bean State Diagram

DRAFT Jakarta Enterprise Beans, Core Features 123

Ejb.html#a1886
Ejb.html#a1886
Ejb.html#a1886
Ejb.html#a1886
Ejb.html#a1886

JNDI access to java:comp/env

EntityManagerFactory access

message listener method, AroundInvoke interceptor method

MessageDrivenContext methods: getRollbackOnly, setRollbackOnly, getCallerPrincipal, isCallerInRole,
getTimerService, lookup, getContextData

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

Timer service or Timer methods

MessageDrivenContext methods:
getUserTransaction, getCallerPrincipal, isCallerInRole, getTimerService, lookup, getContextData

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

Timer service or Timer methods

timeout callback method

MessageDrivenContext methods: getRollbackOnly, setRollbackOnly, getCallerPrincipal,
getTimerService, lookup, getContextData

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

5.5. Message-Driven Bean State Diagram

124 Jakarta Enterprise Beans, Core Features DRAFT

EntityManager access

Timer service or Timer methods

MessageDrivenContext methods:
getUserTransaction, getCallerPrincipal, getTimerService, lookup, getContextData

UserTransaction methods

JNDI access to java:comp/env

Resource manager access

Enterprise bean access

EntityManagerFactory access

EntityManager access

Timer service or Timer methods

Additional restrictions:

The getRollbackOnly and setRollbackOnly methods of the MessageDrivenContext interface should be
used only in the message-driven bean methods that execute in the context of a transaction. The
container must throw the java.lang.IllegalStateException if the methods are invoked while the instance
is not associated with a transaction.

The reasons for disallowing operations in See Operations Allowed in the Methods of a Message-Driven
Bean:

Invoking the getRollbackOnly and setRollbackOnly methods is disallowed in the message-driven bean
methods for which the container does not have a meaningful transaction context, and for all message-
driven beans with bean-managed transaction demarcation.

The UserTransaction interface is unavailable to message-driven beans with container-managed
transaction demarcation.

Invoking getEJBHome or getEJBLocalHome is disallowed in message-driven bean methods because
there are no EJBHome or EJBLocalHome objects for message-driven beans. The container must throw
and log the java.lang.IllegalStateException if these methods are invoked.

5.6. The Responsibilities of the Bean Provider
This section describes the responsibilities of the message-driven Bean Provider to ensure that a
message-driven bean can be deployed in any EJB container.

5.6. The Responsibilities of the Bean Provider

DRAFT Jakarta Enterprise Beans, Core Features 125

Ejb.html#a1886
Ejb.html#a1886

5.6.1. Classes and Interfaces

The message-driven Bean Provider is responsible for providing the following class files:

Message-driven bean class.

Interceptor classes, if any.

5.6.2. Message-Driven Bean Class

The following are the requirements for the message-driven bean class:

The class must implement, directly or indirectly, the message listener interface required by the
messaging type that it supports or the methods of the message listener interface. In the case of JMS,
this is the javax.jms.MessageListener interface.

The class must be defined as public, must not be final , and must not be abstract. The class must be a
top level class.

The class must have a public constructor that takes no arguments. The container uses this constructor
to create instances of the message-driven bean class.

The class must not define the finalize method.

Optionally:

The class may implement, directly or indirectly, the javax.ejb.MessageDrivenBean interface.

The class may implement, directly or indirectly, the javax.ejb.TimedObject interface.

The class may implement the ejbCreate method.

The class may have an additional constructor annotated with the Inject annotation (see See
Relationship to Contexts and Dependency Injection (CDI) Specification and the CDI specification See
Contexts and Dependency Injection for).

The message-driven bean class may have superclasses and/or superinterfaces. If the message-driven
bean has superclasses, the message listener methods, lifecycle callback interceptor methods, timeout
callback methods, the ejbCreate method, and the methods of the MessageDrivenBean interface may be
defined in the message-driven bean class or in any of its superclasses.

The message-driven bean class is allowed to implement other methods (for example, helper methods
invoked internally by the message listener method) in addition to the methods required by the EJB
specification.

5.6.3. Message-Driven Bean Superclasses

A message-driven bean class is permitted to have superclasses that are themselves message-driven

5.6. The Responsibilities of the Bean Provider

126 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a195
Ejb.html#a195
Ejb.html#a9888
Ejb.html#a9888

bean classes. However, there are no special rules that apply to the processing of annotations or the
deployment descriptor for this case. For the purposes of processing a particular message-driven bean
class, all superclass processing is identical regardless of whether the superclasses are themselves
message-driven bean classes. In this regard, the use of message-driven bean classes as superclasses
merely represents a convenient use of implementation inheritance, but does not have component
inheritance semantics.

5.6.4. Message Listener Method

The message-driven bean class must define the message listener methods. The signature of a message
listener method must follow these rules:

The method must be declared as public.

The method must not be declared as final or static.

5.6.5. Message-Driven Bean with No-Methods Listener Interface

The following additional requirements apply for a message-driven bean with a no-methods interface:

All non-static public methods of the bean class and of any superclasses except java.lang.Object are
exposed as message listener methods.

Note: This includes callback methods. The Bean Provider should exercise caution when choosing to
expose callback methods as message listener methods. The runtime context (e.g. transaction context,
caller principal, operations allowed, etc.) for a method invoked as a callback can differ significantly
from the context for the same method when invoked as a message listener. In general, callback
methods should not be exposed as message listener methods. Therefore, it is recommended that all
methods other than message listener methods be assigned an access type other than public.

Only private methods of the bean class and any superclasses except java.lang.Object may be declared
final.

5.6.6. Lifecycle Callback Interceptor Methods

PostConstruct and PreDestroy lifecycle callback interceptor methods may be defined for message-
driven beans. If PrePassivate or PostActivate lifecycle callbacks are defined, they are ignored.41

If the PostConstruct lifecycle callback interceptor method is the ejbCreate method, or if the PreDestroy
lifecycle callback interceptor method is the ejbRemove method, these callback methods must be
implemented on the bean class itself (or on its superclasses). Except for these cases, the method names
can be arbitrary, but must not start with “ejb” to avoid conflicts with the callback methods defined by
the javax.ejb.EnterpriseBean interfaces.

Lifecycle callback interceptor methods may be defined on the bean class and/or on an interceptor class
of the bean. Rules applying to the definition of lifecycle callback interceptor methods are defined in
Section See Interceptors for LifeCycle Event Callbacks .

5.6. The Responsibilities of the Bean Provider

DRAFT Jakarta Enterprise Beans, Core Features 127

#a10260
Ejb.html#a2023

5.7. The Responsibilities of the Container Provider
This section describes the responsibilities of the Container Provider to support a message-driven bean.
The Container Provider is responsible for providing the deployment tools, and for managing the
message-driven bean instances at runtime.

Because the EJB specification does not define the API between deployment tools and the container, we
assume that the deployment tools are provided by the Container Provider. Alternatively, the
deployment tools may be provided by a different vendor who uses the container vendor’s specific API.

5.7.1. Generation of Implementation Classes

The deployment tools provided by the container are responsible for the generation of additional
classes when the message-driven bean is deployed. The tools obtain the information that they need for
generation of the additional classes by introspecting the classes and interfaces provided by the
Enterprise Bean Provider and by examining the message-driven bean’s deployment descriptor.

The deployment tools may generate a class that mixes some container-specific code with the message-
driven bean class. This code may, for example, help the container to manage the bean instances at
runtime. Subclassing, delegation, and code generation can be used by the tools.

5.7.2. Deployment of Message-Driven Beans with No-Methods Listener
Interface

The Container Provider must support the deployment of a message-driven bean with a no-methods
listener interface.

The container’s implementation class generated by the deployment tools must implement the message
listener interface and implement all non-static public methods of the bean class and of any
superclasses except java.lang.Object as message listener methods.

5.7.3. Deployment of JMS Message-Driven Beans

The Container Provider must support the deployment of a JMS message-driven bean as the consumer
of a JMS queue or topic.

5.7.4. Request/Response Messaging Types

If the message listener supports a request/response messaging type, it is the container’s responsibility
to deliver the message response.

5.7.5. Non-reentrant Instances

The container must ensure that only one thread can be executing an instance at any time.

5.7. The Responsibilities of the Container Provider

128 Jakarta Enterprise Beans, Core Features DRAFT

5.7.6. Transaction Scoping, Security, Exceptions

The container must follow the rules with respect to transaction scoping, security checking, and
exception handling, as described in Chapters See Support for Transactions, See Security Management,
and See Exception Handling.

5.7. The Responsibilities of the Container Provider

DRAFT Jakarta Enterprise Beans, Core Features 129

Ejb.html#a2172
Ejb.html#a4945
Ejb.html#a2940

Chapter 6. Persistence
The model for persistence and object/relational mapping was considerably revised and enhanced in
the Enterprise JavaBeans 3.0 release. The contracts and requirements for persistent entities are
defined by the “ Java Persistence API ” specification See Java™ Persistence API, which also contains the
full specification of the Java Persistence query language and the metadata for object/relational
mapping.

The client view of entity beans under the earlier EJB 2.1 programming model, the contracts for EJB 2.1
Entity Beans with Container-Managed Persistence, the contracts for the EJB QL query language, the
contracts for EJB 2.1 Entity Beans with Bean-Managed Persistence, and the contracts for EJB 1.1 Entity
Beans with Container-Managed Persistence are described in the EJB Optional Features document See
EJB 3.2 Optional Features Chapters ../Optional/Chapters.html#UNKNOWN, ../Optional/Chapters.html#
UNKNOWN, ../Optional/Chapters.html#UNKNOWN, ../Optional/Chapters.html#UNKNOWN, and ../
Optional/Chapters.html#UNKNOWN respectively.

Chapter 6. Persistence

130 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9851
Ejb.html#a9890
Ejb.html#a9890
../Optional/Chapters.html#UNKNOWN
../Optional/Chapters.html#UNKNOWN
../Optional/Chapters.html#UNKNOWN
../Optional/Chapters.html#UNKNOWN
../Optional/Chapters.html#UNKNOWN
../Optional/Chapters.html#UNKNOWN
../Optional/Chapters.html#UNKNOWN

Chapter 7. Interceptors
Interceptors are used to interpose on the business method invocations and lifecycle events that occur
on an enterprise bean instance.

7.1. Overview
The general rules for defining Interceptor classes, their lifecycle, and associated metadata are
described in the Interceptors specification See Interceptors. This chapter describes the set of
requirements that are specific to the use of interceptors with Enterprise JavaBeans.

For the use of interceptors with Enterprise JavaBeans, the interceptor “target class” is the bean class.
Interceptors may be used with session beans and message-driven beans.

The programming restrictions that apply to enterprise bean components apply to interceptors as well.
See See Programming Restrictions.

It is illegal to associate JTA transactional interceptors (see See Java™) with Enterprise JavaBeans. The
EJB Container should fail deployment of such applications.42

Default interceptors are interceptors that apply to all components within an ejb-jar file or .war file.

7.2. Interceptor Life Cycle
The lifecycle of an interceptor instance is the same as that of the bean instance with which it is
associated. In the case of interceptors associated with stateful session beans, the interceptor instances
are passivated upon bean instance passivation, and activated when the bean instance is activated. See
sections See Stateful Session Beans, See Stateless Session Bean Lifecycle State Diagram, and See
Message-Driven Bean State Diagram.

In addition to the AroundConstruct, PostConstruct and PreDestroy callback support required by the
Interceptors specification See Interceptors, interceptors associated with stateful session beans may
define PostActivate and PrePassivate callbacks. Both the interceptor instance and the bean instance are
created or activated before any of the respective PostConstruct or PostActivate callbacks are invoked.
Any PreDestroy and PrePassivate callbacks are invoked before the respective destruction or
passivation of either the bean instance or interceptor instance.

The use of an extended persistence context is only supported for interceptors that are associated with
stateful session beans.

7.3. Business Method Interceptors

7.1. Overview

DRAFT Jakarta Enterprise Beans, Core Features 131

Ejb.html#a9887
Ejb.html#a9535
Ejb.html#a9857
#a10261
Ejb.html#a921
Ejb.html#a1077
Ejb.html#a1871
Ejb.html#a1871
Ejb.html#a9887

 AroundInvoke interceptor methods may be
defined for business methods of sessions beans and for the message
listener methods of message-driven beans.

Business method interceptor methods may throw runtime exceptions or application exceptions that
are allowed in the throws clause of the business method. See section See Exception Handling for
further details.

7.4. Timer Timeout Method Interceptors
Interceptor methods may be defined for the EJB timer timeout methods of session beans and message-
driven beans. Such methods are referred to as AroundTimeout methods.

Within an AroundTimeout method, the InvocationContext.getTimer() method returns the
javax.ejb.Timer object associated with the timeout being intercepted.

 AroundTimeout methods may throw system
exceptions, but not application exceptions. See section
link:Ejb.html#a2031[See Exception Handling] for further details.

7.5. Interceptors for LifeCycle Event Callbacks
Lifecycle callback interceptor methods may be defined for session beans and message-driven beans.

The AroundConstruct, PostConstruct , PreDestroy , PostActivate , and PrePassivate annotations are used
to define interceptor methods for a lifecycle callback events. An AroundConstruct lifecycle callback
interceptor method may be defined on an interceptor class only. All other interceptor methods can be
defined on an interceptor class and/or directly on the bean class.

Lifecycle callback interceptor methods are invoked in an unspecified security context. Lifecycle
callback interceptor methods are invoked in an unspecified transaction context, except for singleton
and stateful session bean PostConstruct and PreDestroy methods and stateful session bean PostActivate
, and PrePassivate methods, whose transaction context is based on their respective transaction
attributes. See See Session Bean Lifecycle Callback Interceptor Methods.

 PostActivate , and _PrePassivate_ methods
follow requirements for the lifecycle callback interceptor methods
defined in the Interceptors specification document
link:Ejb.html#a9887[See Interceptors, version 1.2.
http://jcp.org/en/jsr/detail?id=318.].

Lifecycle callback interceptor methods may throw system runtime exceptions, but not application

7.4. Timer Timeout Method Interceptors

132 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a2031
Ejb.html#a705

exceptions. See section See Exception Handling for further details.

7.6. InvocationContext
The InvocationContext object provides metadata that enables interceptor methods to control the
behavior of the invocation chain. The getContextData method enables an interceptor to retrieve or
update the data associated with the invocation by another interceptor, business method, and/or
webservices context in the invocation chain. The contextual data is not sharable across separate
business method invocations or lifecycle callback events. If interceptors are invoked as a result of the
invocation on a web service endpoint, the map returned by the getContextData method will be the JAX-
WS MessageContext See Java™ API for. The lifecycle of the InvocationContext instance is otherwise
unspecified.

7.7. Exception Handling

 Interceptor methods are allowed to throw
runtime exceptions or any checked exceptions that the method they
interpose on allows within its _throws_ clause. _Interceptor_ methods
are allowed to catch and suppress exceptions and recover by calling
proceed().

 Interceptor method invoked in a
transaction context, can mark the transaction for rollback by throwing a
runtime exception or by calling the _EJBContext_ method
setRollbackOnly() . This may be done before or after
InvocationContext.proceed() is called.

If a system exception escapes the interceptor chain, the bean instance and any associated interceptor
instances are discarded (unless the bean is a singleton session bean43). The PreDestroy callbacks are
not invoked in this case: the interceptor methods in the chain should perform any necessary clean-up
operations as the interceptor chain unwinds.

7.8. Specification of Interceptors in the Deployment
Descriptor
The deployment descriptor can be used as an alternative to metadata annotations to specify
interceptors and their binding to enterprise beans or to override the invocation order of interceptors
as specified in annotations.

7.6. InvocationContext

DRAFT Jakarta Enterprise Beans, Core Features 133

Ejb.html#a2031
Ejb.html#a9881
#a10262

7.8.1. Specification of Interceptors

The interceptor deployment descriptor element is used to specify the interceptor methods of an
interceptor class. The interceptor methods are specified by using the around-invoke , around-timeout ,
around-construct , post-construct , pre-destroy, pre-passivate, and post-activate elements.

At most one method of a given interceptor class can be designated as an around-invoke method, an
around-timeout method, a lifecycle callback interceptor method, regardless of whether the deployment
descriptor is used to define interceptors or whether some combination of annotations and deployment
descriptor elements is used.

7.8.2. Binding of Interceptors to Target Classes

The interceptor-binding element is used to specify the binding of interceptor classes to target classes
and their methods. The subelements of the interceptor-binding element are as follows:

The target-name element must identify the associated target class or the wildcard value " * " (which is
used to define interceptors that are bound to all target classes).

The interceptor-class element specifies the interceptor class. The interceptor class contained in an
interceptor-class element must either be declared in the interceptor deployment descriptor element or
appear in at least one Interceptor annotation on a target class. The interceptor-order element is used as
an optional alternative to specify a total ordering over the interceptors defined for the given level and
above.

The exclude-default-interceptors and exclude-class-interceptors elements specify that default
interceptors and class interceptors, respectively, are not to be applied to a target class and/or method.

The method-name element specifies the method name for a method-level interceptor; and the optional
method-params elements identify a single method among multiple methods with an overloaded
method name.

The method-name element may be used to bind a constructor-level interceptor using the unqualified
name of the bean class as the value; the optional method-params elements identify the constructor if a
bean class has a constructor annotated with the Inject annotation in addition to a no-arg constructor.

Default interceptors are bound to all target classes in a module using the wildcard syntax " * ". In
addition, interceptors may be bound at the level of the target class (class-level interceptors) or methods
of the target class (method-level interceptors).

The binding of interceptors to classes is additive. If interceptors are bound at the class level and/or
default level as well as at the method level, both class-level and/or default-level as well as method-level
interceptors will apply. The deployment descriptor may be used to augment the interceptors and
interceptor methods defined by means of annotations. When the deployment descriptor is used to
augment the interceptors specified in annotations, the interceptor methods specified in the
deployment descriptor will be invoked after those specified in annotations, according to the ordering
specified earlier. The interceptor-order deployment descriptor element may be used to override this

7.8. Specification of Interceptors in the Deployment Descriptor

134 Jakarta Enterprise Beans, Core Features DRAFT

ordering.

The exclude-default-interceptors element disables default interceptors for the level at which it is
specified and lower. That is, exclude-default-interceptors when applied at the class level disables the
application of default interceptors for all methods of the class. The exclude-class-interceptors element
applied to a method disables the application of class-level interceptors for the given method. Explicitly
listing an excluded higher-level interceptor at a lower level causes it to be applied at that level and
below.

It is possible to override the ordering of interceptors by using the interceptor-order element to specify a
total ordering of interceptors at class level and/or method level. If the interceptor-order element is
used, the ordering specified at the given level must be a total order over all interceptor classes that
have been defined at that level and above (unless they have been explicitly excluded by means of one
of the exclude- elements described above).

There are four possible styles of the interceptor-binding element syntax:

Style 1 :

<interceptor-binding>

<target-name>*</target-name>

<interceptor-class>INTERCEPTOR</interceptor-class>

</interceptor-binding>

Specifying the target-name element as the wildcard value " * " designates default interceptors.

Style 2 :

<interceptor-binding>

<target-name>TARGETNAME</target-name>

<interceptor-class>INTERCEPTOR</interceptor-class>

7.8. Specification of Interceptors in the Deployment Descriptor

DRAFT Jakarta Enterprise Beans, Core Features 135

</interceptor-binding>

This style is used to refer to interceptors associated with the specified target class (class-level
interceptors).

Style 3 :

<interceptor-binding>

<target-name>TARGETNAME</target-name>

<interceptor-class>INTERCEPTOR</interceptor-class>

<method-name>METHOD</method-name>

</interceptor-binding>

This style is used to associate a method-level interceptor with the specified method of the specified
target class. If there are multiple methods with the same overloaded name, the element of this style
refers to all the methods with the overloaded name. Note that the wildcard value " * " cannot be used
to specify method-level interceptors.

Style 4 :

<interceptor-binding>

<target-name>TARGETNAME</target-name>

<interceptor-class>INTERCEPTOR</interceptor-class>

<method-name>METHOD</method-name>

<method-params>

7.8. Specification of Interceptors in the Deployment Descriptor

136 Jakarta Enterprise Beans, Core Features DRAFT

<method-param>PARAM-1</method-param>

<method-param>PARAM-2</method-param>

...

<method-param>PARAM-n</method-param>

</method-params>

<interceptor-binding>

This style is used to associate a method-level interceptor with the specified method of the specified
target class. This style is used to refer to a single method within a set of methods with an overloaded
name. The values PARAM-1 through PARAM-n are the fully-qualified Java types of the method’s input
parameters (if the method has no input arguments, the method-params element contains no method-
param elements). Arrays are specified by the array element’s type, followed by one or more pair of
square brackets (e.g. int[][]).

If both styles 3 and 4 are used to define method-level interceptors for the same bean, the relative
ordering of those method-level interceptors is undefined.

7.8.2.1. Examples

Examples of the usage of the interceptor-binding syntax are given below.

 Style 1 : The following interceptors are
default interceptors. They will be invoked in the order specified.

<interceptor-binding>

<target-name>*</target-name>

<interceptor-class>org.acme.MyDefaultIC</interceptor-class>

<interceptor-class>org.acme.MyDefaultIC2</interceptor-class>

7.8. Specification of Interceptors in the Deployment Descriptor

DRAFT Jakarta Enterprise Beans, Core Features 137

</interceptor-binding>

 Style 2: The following interceptors are
the class-level interceptors of the _EmployeeService_ class. They will
be invoked in the order specified after any default interceptors.

<interceptor-binding>

<target-name>EmployeeService</target-name>

<interceptor-class>org.acme.MyIC</interceptor-class>

<interceptor-class>org.acme.MyIC2</interceptor-class>

</interceptor-binding>

 Style 3 : The following interceptors apply
to all the _myMethod_ methods of the _EmployeeService_ class. They will
be invoked in the order specified after any default interceptors and
class-level interceptors.

<interceptor-binding>

<target-name>EmployeeService</target-name>

<interceptor-class>org.acme.MyIC</interceptor-class>

<interceptor-class>org.acme.MyIC2</interceptor-class>

<method-name>myMethod</method-name>

</interceptor-binding>

The following example illustrates more complex parameter types. The method myMethod(char s, int i,
int[] iar, mypackage.MyClass mycl, mypackage.MyClass[][] myclaar) would be specified as:

7.8. Specification of Interceptors in the Deployment Descriptor

138 Jakarta Enterprise Beans, Core Features DRAFT

<interceptor-binding>

<target-name>EmployeeService</target-name>

<interceptor-class>org.acme.MyIC</interceptor-class>

<method-name>myMethod</method-name>

<method-params>

<method-param>char</method-param>

<method-param>int</method-param>

<method-param>int[]</method-param>

<method-param>mypackage.MyClass</method-param>

<method-param>mypackage.MyClass[][]</method-param>

</method-params>

</interceptor-binding>

The following example illustrates constructor-level interceptors that apply to all constructors of the
EmployeeService class. They will be invoked in the order specified after any default interceptors and
class-level interceptors.

<interceptor-binding>

<target-name>EmployeeService</target-name>

<interceptor-class>org.acme.MyIC</interceptor-class>

7.8. Specification of Interceptors in the Deployment Descriptor

DRAFT Jakarta Enterprise Beans, Core Features 139

<interceptor-class>org.acme.MyIC2</interceptor-class>

<method-name>EmployeeService</method-name>

</interceptor-binding>

 Style 4 : The following interceptor
element refers to the _myMethod(String_ _firstName, String_ _LastName)_
method of the _EmployeeService_ class.

<interceptor-binding>

<target-name>EmployeeService</target-name>

<interceptor-class>org.acme.MyIC</interceptor-class>

<method-name>myMethod</method-name>

<method-params>

<method-param>java.lang.String</method-param>

<method-param>java.lang.String</method-param>

</method-params>

</interceptor-binding>

The following example illustrates constructor-level interceptors that apply to the specific constructor
of the EmployeeService class.

<interceptor-binding>

<target-name>EmployeeService</target-name>

7.8. Specification of Interceptors in the Deployment Descriptor

140 Jakarta Enterprise Beans, Core Features DRAFT

<interceptor-class>org.acme.MyIC</interceptor-class>

<interceptor-class>org.acme.MyIC2</interceptor-class>

<method-name>EmployeeService</method-name>

<method-params>

<method-param>org.acme.Account</method-param>

<method-param>java.lang.String</method-param>

</method-params>

</interceptor-binding>

The following example illustrates the total ordering of interceptors using the interceptor-order
element:

<interceptor-binding>

<target-name>EmployeeService</target-name>

<interceptor-order>

<interceptor-class>org.acme.MyIC

</interceptor-class>

<interceptor-class>org.acme.MyDefaultIC

</interceptor-class>

7.8. Specification of Interceptors in the Deployment Descriptor

DRAFT Jakarta Enterprise Beans, Core Features 141

<interceptor-class>org.acme.MyDefaultIC2

</interceptor-class>

<interceptor-class>org.acme.MyIC2

</interceptor-class>

</interceptor-order>

</interceptor-binding>

7.8. Specification of Interceptors in the Deployment Descriptor

142 Jakarta Enterprise Beans, Core Features DRAFT

Chapter 8. Support for Transactions
One of the key features of the Enterprise JavaBeans™ architecture is support for distributed
transactions. The Enterprise JavaBeans architecture allows an application developer to write an
application that atomically updates data in multiple databases which may be distributed across
multiple sites. The sites may use EJB servers from different vendors.

8.1. Overview
This section provides a brief overview of transactions and illustrates a number of transaction
scenarios in EJB.

8.1.1. Transactions

Transactions are a proven technique for simplifying application programming. Transactions free the
application programmer from dealing with the complex issues of failure recovery and multi-user
programming. The transactional system ensures that a unit of work either fully completes, or the work
is fully rolled back. Furthermore, transactions make it possible for the programmer to design the
application as if it ran in an environment that executes units of work serially.

Support for transactions is an essential element of the Enterprise JavaBeans architecture. The
Enterprise Bean Provider and the client application programmer are not exposed to the complexity of
distributed transactions. The Bean Provider can choose between using programmatic transaction
demarcation in the enterprise bean code (this style is called bean-managed transaction demarcation)
or declarative transaction demarcation performed automatically by the EJB container (this style is
called container-managed transaction demarcation).

With bean-managed transaction demarcation, the enterprise bean code demarcates transactions using
the javax.transaction.UserTransaction interface. All resource manager accesses between the
UserTransaction.begin and UserTransaction.commit calls are part of a transaction.

The terms resource and resource manager used in this chapter refer to the resources declared using
the Resource annotation in the enterprise bean class or using the resource-ref element in the enterprise
bean’s deployment descriptor. This includes not only database resources, but also other resources,
such as JMS Connections. These resources are considered to be “managed” by the container.44 For a
discussion about resources used in the Java Persistence API that may be “unaware” of the presence of
JTA transactions, see See Java™ Persistence API.

With container-managed transaction demarcation, the container demarcates transactions per
instructions provided by the developer in metadata annotations or in the deployment descriptor. These
instructions, called transaction attributes, tell the container whether it should include the work
performed by an enterprise bean method in a client’s transaction, run the enterprise bean method in a
new transaction started by the container, or run the method with “no transaction” (Refer to Subsection
See Handling of Methods that Run with “an unspecified transaction context” for the description of the
“no transaction” case).

8.1. Overview

DRAFT Jakarta Enterprise Beans, Core Features 143

#a10263
Ejb.html#a9851
Ejb.html#a2889

Regardless of whether an enterprise bean uses bean-managed or container-managed transaction
demarcation, the burden of implementing transaction management is on the EJB Container and Server
Provider. The EJB container and server implement the necessary low-level transaction protocols, such
as the two-phase commit protocol between a transaction manager and a database system or messaging
provider, transaction context propagation, and distributed two-phase commit.

 _Many applications will consist of one or
several enterprise beans that all use a single resource manager
(typically a relational database management system). The EJB container
can make use of resource manager local transactions as an optimization
technique for enterprise beans for which distributed transactions are
not needed. A resource manager local transaction does not involve
control or coordination by an external transaction manager. The
container’s use of local transactions as an optimization technique for
enterprise beans with either container-managed transaction demarcation
or bean-managed transaction demarcation is not visible to the enterprise
beans. For a discussion of the use of resource manager local
transactions as a container optimization strategy, refer to
link:Ejb.html#a9861[See Java™ Platform, Enterprise Edition
Specification Version 7 (Java EE). http://jcp.org/en/jsr/detail?id=342.]
and link:Ejb.html#a9863[See Java EE™ Connector Architecture,
version 1.7 (Connector). http://jcp.org/en/jsr/detail?id=322.]._

8.1.2. Transaction Model

The Enterprise JavaBeans architecture supports flat transactions. A flat transaction cannot have any
child (nested) transactions.

Note: The decision not to support nested transactions allows vendors of existing transaction processing
and database management systems to incorporate support for Enterprise JavaBeans. If these vendors
provide support for nested transactions in the future, Enterprise JavaBeans may be enhanced to take
advantage of nested transactions.

8.1.3. Relationship to JTA and JTS

The Java™ Transaction API (JTA) [See Java™ Transaction API] is a specification of the interfaces
between a transaction manager and the other parties involved in a distributed transaction processing
system: the application programs, the resource managers, and the application server.

The Java Transaction Service (JTS) [See Java™] API is a Java binding of the CORBA Object Transaction
Service (OTS) 1.1 specification. JTS provides transaction interoperability using the standard IIOP
protocol for transaction propagation between servers. The JTS API is intended for vendors who
implement transaction processing infrastructure for enterprise middleware. For example, an EJB
server vendor may use a JTS implementation as the underlying transaction manager.

8.1. Overview

144 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9857
Ejb.html#a9858

The EJB architecture does not require the EJB container to support the JTS interfaces. The EJB
architecture requires that the EJB container support the JTA API defined in See Java™ Transaction API
and the Connector APIs defined in See Java EE™ Connector.

8.2. Sample Scenarios
This section describes several scenarios that illustrate the distributed transaction capabilities of the
Enterprise JavaBeans architecture.

8.2.1. Update of Multiple Databases

The Enterprise JavaBeans architecture makes it possible for an application program to update data in
multiple databases in a single transaction.

In the following figure, a client invokes the enterprise bean X. Bean X updates data using two database
connections that the Deployer configured to connect with two different databases, A and B. Then X
calls another enterprise bean, Y. Bean Y updates data in database C. The EJB server ensures that the
updates to databases A, B, and C are either all committed or all rolled back.

===

Updates to Simultaneous Databases

The application programmer does not have to do anything to ensure transactional semantics. Behind
the scenes, the EJB server enlists the database connections as part of the transaction. When the
transaction commits, the EJB server and the database systems perform a two-phase commit protocol to
ensure atomic updates across all three databases.

8.2.2. Messages Sent or Received Over JMS Sessions and Update of Multiple
Databases

The Enterprise JavaBeans architecture makes it possible for an application program to send messages
to or receive messages from one or more JMS Destinations and/or to update data in one or more
databases in a single transaction.

8.2. Sample Scenarios

DRAFT Jakarta Enterprise Beans, Core Features 145

Ejb.html#a9857
Ejb.html#a9863

In the following figure, a client invokes the enterprise bean X. Bean X sends a message to a JMS queue
A and updates data in a database B using connections that the Deployer configured to connect with a
JMS provider and a database. Then X calls another enterprise bean, Y. Bean Y updates data in database
C. The EJB server ensures that the operations on A, B, and C are either all committed, or all rolled back.

===

Message Sent to JMS Queue and Updates to Multiple Databases

The application programmer does not have to do anything to ensure transactional semantics. The
enterprise beans X and Y perform the message send and database updates using the standard JMS and
JDBC™ APIs. Behind the scenes, the EJB server enlists the session on the connection to the JMS provider
and the database connections as part of the transaction. When the transaction commits, the EJB server
and the messaging and database systems perform a two-phase commit protocol to ensure atomic
updates across all the three resources.

In the following figure, a client sends a message to the JMS queue A serviced by the message-driven
bean X. Bean X updates data using two database connections that the Deployer configured to connect
with two different databases, B and C. The EJB server ensures that the dequeuing of the JMS message,
its receipt by bean X, and the updates to databases B and C are either all committed or all rolled back.

===

Message Sent to JMS Queue Serviced by Message-Driven Bean and Updates to Multiple Databases

8.2. Sample Scenarios

146 Jakarta Enterprise Beans, Core Features DRAFT

8.2.3. Update of Databases via Multiple EJB Servers

The Enterprise JavaBeans architecture allows updates of data at multiple sites to be performed in a
single transaction.

In the following figure, a client invokes the enterprise bean X. Bean X updates data in database A, and
then calls another enterprise bean Y that is installed in a remote EJB server. Bean Y updates data in
database B. The Enterprise JavaBeans architecture makes it possible to perform the updates to
databases A and B in a single transaction.

===

Updates to Multiple Databases in Same Transaction

When X invokes Y, the two EJB servers cooperate to propagate the transaction context from X to Y. This
transaction context propagation is transparent to the application-level code.

At transaction commit time, the two EJB servers use a distributed two-phase commit protocol (if the
capability exists) to ensure the atomicity of the database updates.

8.2.4. Client-Managed Demarcation

A Java client can use the javax.transaction.UserTransaction interface to explicitly demarcate
transaction boundaries. The client program obtains the javax.transaction.UserTransaction interface
through dependency injection or lookup in the bean’s EJBContext or in the JNDI name space.

A client program using explicit transaction demarcation may perform, via enterprise beans, atomic
updates across multiple databases residing at multiple EJB servers, as illustrated in the following
figure.

===

Updates on Multiple Databases on Multiple Servers

8.2. Sample Scenarios

DRAFT Jakarta Enterprise Beans, Core Features 147

The application programmer demarcates the transaction with begin and commit calls. If the enterprise
beans X and Y are configured to use a client transaction (i.e., their methods have transaction attributes
that either require or support an existing transaction context), the EJB server ensures that the updates
to databases A and B are made as part of the client’s transaction.

8.2.5. Container-Managed Demarcation

Whenever a client invokes a method on an enterprise bean’s business interface, on the bean no-
interface view, on a home or component interface, or a message listener method, the container
interposes on the method invocation. The interposition allows the container to control transaction
demarcation declaratively through the transaction attribute set by the developer. (See See Specification
of the Transaction Attributes for a Bean’s Methods for a description of transaction attributes.)

For example, if a session bean method is configured with the REQUIRED transaction attribute, the
container behaves as follows: If the client request is not associated with a transaction context, the
container automatically initiates a transaction whenever a client invokes an enterprise bean method
that requires a transaction context. If the client request contains a transaction context, the container
includes the enterprise bean method in the client transaction.

The following figure illustrates such a scenario. A non-transactional client invokes the enterprise bean
X, and the invoked method has the REQUIRED45 transaction attribute. Because the invocation from the
client does not include a transaction context, the container starts a new transaction before dispatching
the method on X. Bean X’s work is performed in the context of the transaction. When X calls other
enterprise beans (Y in our example), the work performed by the other enterprise beans is also
automatically included in the transaction (subject to the transaction attribute of the other enterprise
bean).

===

Update of Multiple Databases from Non-Transactional Client

8.2. Sample Scenarios

148 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a2538
Ejb.html#a2538
#a10264

The container automatically commits the transaction at the time X returns a reply to the client.

If a message-driven bean’s message listener method is configured with the REQUIRED transaction
attribute, the container automatically starts a new transaction before the delivery of the message and,
hence, before the invocation of the method.46

JMS requires that the transaction be started before the dequeuing of the message. See See Java™
Message Service.

The container automatically enlists the resource manager associated with the arriving message and all
the resource managers accessed by the message listener method with the transaction.

It is illegal to associate JTA transactional interceptors (see See Java™ Transaction API) with Enterprise
JavaBeans47.

8.3. Bean Provider’s Responsibilities
This section describes the Bean Provider’s view of transactions and defines the Bean Provider’s
responsibilities.

8.3.1. Bean-Managed Versus Container-Managed Transaction Demarcation

When designing an enterprise bean, the developer must decide whether the enterprise bean will
demarcate transactions programmatically in the business methods (bean-managed transaction
demarcation), or whether the transaction demarcation is to be performed by the container based on
the transaction attributes specified in metadata annotations or in the deployment descriptor
(container-managed transaction demarcation). Typically enterprise beans will be specified to have
container-managed transaction demarcation. This is the default if no transaction management type is
specified.

A session bean or a message-driven bean can be designed with bean-managed transaction
demarcation or with container-managed transaction demarcation. (But it cannot be both at the same
time.)

An enterprise bean instance can access resource managers in a transaction only in the enterprise

8.3. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 149

#a10265
Ejb.html#a9862
Ejb.html#a9862
Ejb.html#a9857
#a10266

bean’s methods in which there is a transaction context available.

8.3.1.1. Non-Transactional Execution

Some enterprise beans may need to access resource managers that do not support an external
transaction coordinator. The container cannot manage the transactions for such enterprise beans in
the same way that it can for the enterprise beans that access resource managers that support an
external transaction coordinator.

If an enterprise bean needs to access a resource manager that does not support an external transaction
coordinator, the Bean Provider should design the enterprise bean with container-managed transaction
demarcation and assign the NOT_SUPPORTED transaction attribute to the bean class or to all the bean’s
methods. The EJB architecture does not specify the transactional semantics of the enterprise bean
methods. See Subsection See Handling of Methods that Run with “an unspecified transaction context”
for how the container implements this case.

8.3.2. Isolation Levels

Transactions not only make completion of a unit of work atomic, but they also isolate the units of work
from each other, provided that the system allows concurrent execution of multiple units of work.

The isolation level describes the degree to which the access to a resource manager by a transaction is
isolated from the access to the resource manager by other concurrently executing transactions.

The following are guidelines for managing isolation levels in enterprise beans.

The API for managing an isolation level is resource-manager-specific. (Therefore, the EJB architecture
does not define an API for managing isolation levels.)

If an enterprise bean uses multiple resource managers, the Bean Provider may specify the same or
different isolation level for each resource manager. This means, for example, that if an enterprise bean
accesses multiple resource managers in a transaction, access to each resource manager may be
associated with a different isolation level.

The Bean Provider must take care when setting an isolation level. Most resource managers require that
all accesses to the resource manager within a transaction are done with the same isolation level. An
attempt to change the isolation level in the middle of a transaction may cause undesirable behavior,
such as an implicit sync point (a commit of the changes done so far).

For session beans and message-driven beans with bean-managed transaction demarcation, the Bean
Provider can specify the desirable isolation level programmatically in the enterprise bean’s methods,
using the resource-manager specific API. For example, the Bean Provider can use the
java.sql.Connection.setTransactionIsolation method to set the appropriate isolation level for database
access.

Additional care must be taken if multiple enterprise beans access the same resource manager in the
same transaction. Conflicts in the requested isolation levels must be avoided.

8.3. Bean Provider’s Responsibilities

150 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a2889

8.3.3. Enterprise Beans Using Bean-Managed Transaction Demarcation

This subsection describes the requirements for the Bean Provider of an enterprise bean with bean-
managed transaction demarcation.

The enterprise bean with bean-managed transaction demarcation must be a session bean or a
message-driven bean.

An instance that starts a transaction must complete the transaction before it starts a new transaction.

The Bean Provider uses the UserTransaction interface to demarcate transactions. All updates to the
resource managers between the UserTransaction.begin and UserTransaction. commit methods are
performed in a transaction. While an instance is in a transaction, the instance must not attempt to use
the resource-manager specific transaction demarcation API (e.g. it must not invoke the commit or
rollback method on the java.sql.Connection interface or on the javax.jms.Session interface).48

A stateful session bean instance may, but is not required to, commit a started transaction before a
business method returns. If a transaction has not been completed by the end of a business method, the
container retains the association between the transaction and the instance across multiple client calls
until the instance eventually completes the transaction. A stateful session bean instance must commit a
transaction before PostConstruct , PreDestroy , PrePassivate or PostActivate lifecycle callback
interceptor method returns.

A stateless session bean instance must commit a transaction before a business method or timeout
callback method returns.

A singleton session bean instance must commit a transaction before a business method or timeout
callback method or PostConstruct or PreDestroy lifecycle callback interceptor method returns.

A message-driven bean instance must commit a transaction before a message listener method or
timeout callback method returns.

If AroundInvoke interceptor methods are applied to the business method or AroundTimeout
interceptor methods are applied to the timeout callback method of a singleton or a stateless session
bean or a message-driven bean, the transaction must be completed before the last AroundInvoke or
AroundTimeout interceptor method completes.

The following code segments illustrate a business method that performs a transaction involving two
database connections.

@Stateless

@TransactionManagement(BEAN)

public class MySessionBean implements MySession \{

8.3. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 151

#a10267

 @Resource javax.transaction.UserTransaction
ut;

@Resource javax.sql.DataSource database1;

@Resource javax.sql.DataSource database2;

public void someMethod(...) \{

java.sql.Connection con1;

java.sql.Connection con2;

java.sql.Statement stmt1;

java.sql.Statement stmt2;

try \{

 // obtain con1 object and set it up for
transactions

con1 = database1.getConnection();

stmt1 = con1.createStatement();

 // obtain con2 object and set it up for
transactions

8.3. Bean Provider’s Responsibilities

152 Jakarta Enterprise Beans, Core Features DRAFT

con2 = database2.getConnection();

stmt2 = con2.createStatement();

 // Now do a transaction that involves con1
and con2.

// start the transaction

ut.begin();

 // Do some updates to both con1 and con2.
The container

 // automatically enlists con1 and con2 with
the

// transaction.

stmt1.executeQuery(...);

stmt1.executeUpdate(...);

stmt2.executeQuery(...);

stmt2.executeUpdate(...);

stmt1.executeUpdate(...);

8.3. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 153

stmt2.executeUpdate(...);

// commit the transaction

ut.commit();

} catch (...) \{

// handle exception s

...

} finally \{

// release connections

con1.close();

con2.close();

...

}

}

...

}

8.3. Bean Provider’s Responsibilities

154 Jakarta Enterprise Beans, Core Features DRAFT

The following code segments illustrate a business method that performs a transaction involving both a
database connection and a JMS connection.

@Stateless

@TransactionManagement(BEAN)

public class MySessionBean implements MySession \{

 @Resource javax.Transaction.UserTransaction
ut;

@Resource javax.sql.DataSource database1;

 @Resource javax.jms.QueueConnectionFactory
qcf1;

@Resource javax.jms.Queue queue1;

public void someMethod(...) \{

java.sql.Connection dcon;

java.sql.Statement stmt;

javax.jms.QueueConnection qcon;

javax.jms.QueueSession qsession;

javax.jms.QueueSender qsender;

javax.jms.Message message;

8.3. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 155

try \{

 // obtain db conn object and set it up for
transactions

dcon = database1.getConnection();

stmt = dcon.createStatement();

 // obtain jms conn object and set up session
for

// transactions

qcon = qcf1.createQueueConnection();

qsession = qcon.createQueueSession(true,0);

qsender = qsession.createSender(queue1);

message = qsession.createTextMessage();

message.setText(“some message”);

 // Now do a transaction that involves both
connections

// start the transaction

8.3. Bean Provider’s Responsibilities

156 Jakarta Enterprise Beans, Core Features DRAFT

ut.begin();

 // Do database updates and send message. The
container

 // automatically enlists dcon and qsession
with the

// transaction.

stmt.executeQuery(...);

stmt.executeUpdate(...);

stmt.executeUpdate(...);

qsender.send(message);

// commit the transaction

ut.commit();

} catch (...) \{

// handle exception s

...

} finally \{

8.3. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 157

// release connections

dcon.close();

qcon.close();

...

}

}

...

}

The following code segments illustrate a stateful session bean that retains a transaction across three
client calls, invoked in the following order: method1 , method2 , and method3. 49

@Stateful

@TransactionManagement(BEAN)

public class MySessionBean implements MySession \{

 @Resource javax.Transaction.UserTransaction
ut;

@Resource javax.sql.DataSource database1;

@Resource javax.sql.DataSource database2;

java.sql.Connection con1;

8.3. Bean Provider’s Responsibilities

158 Jakarta Enterprise Beans, Core Features DRAFT

#a10268

java.sql.Connection con2;

public void method1(...) \{

java.sql.Statement stmt;

// start a transaction

ut.begin();

// make some updates on con1

con1 = database1.getConnection();

stmt = con1.createStatement();

stmt.executeUpdate(...);

stmt.executeUpdate(...);

//

 // The container retains the transaction
associated with the

 // instance to the next client call (which
is method2(...)).

}

8.3. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 159

public void method2(...) \{

java.sql.Statement stmt;

con2 = database2.getConnection();

stmt = con2.createStatement();

stmt.executeUpdate(...);

stmt.executeUpdate(...);

 // The container retains the transaction
associated with the

 // instance to the next client call (which
is method3(...)).

}

public void method3(...) \{

java.sql.Statement stmt;

// make some more updates on con1 and con2

stmt = con1.createStatement();

stmt.executeUpdate(...);

8.3. Bean Provider’s Responsibilities

160 Jakarta Enterprise Beans, Core Features DRAFT

stmt = con2.createStatement();

stmt.executeUpdate(...);

try \{

// commit the transaction

ut.commit();

} finally \{

// release connections

con1.close();

con2.close();

...

}

}

...

}

It is possible for an enterprise bean to open and close a database connection in each business method
(rather than hold the connection open until the end of transaction). The following code segments

8.3. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 161

illustrate a stateful session bean for which the client executes the sequence of methods (method1 ,
method2 , method2 , method2 , and method3). In this scenario, all the database updates done by the
multiple invocations of method2 are performed in the scope of the same transaction, which is the
transaction started in method1 and committed in method3.

@Stateful

@TransactionManagement(BEAN)

public class MySessionBean implements MySession \{

 @Resource javax.Transaction.UserTransaction
ut;

@Resource javax.sql.DataSource database1;

public void method1(...) \{

// start a transaction

ut.begin();

}

public void method2(...) \{

java.sql.Connection con;

java.sql.Statement stmt;

try \{

// open connection

8.3. Bean Provider’s Responsibilities

162 Jakarta Enterprise Beans, Core Features DRAFT

con = database1.getConnection();

// make some updates on con

stmt = con.createStatement();

stmt.executeUpdate(...);

stmt.executeUpdate(...);

} finally \{

// close the connection

con.close();

...

}

}

public void method3(...) \{

// commit the transaction

ut.commit();

8.3. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 163

}

...

}

8.3.3.1. getRollbackOnly and setRollbackOnly Methods

An enterprise bean with bean-managed transaction demarcation must not use the getRollbackOnly
and setRollbackOnly methods of the EJBContext interface.

An enterprise bean with bean-managed transaction demarcation has no need to use these methods,
because of the following reasons:

An enterprise bean with bean-managed transaction demarcation can obtain the status of a transaction
by using the getStatus method of the javax.transaction.UserTransaction interface.

An enterprise bean with bean-managed transaction demarcation can rollback a transaction using the
rollback method of the javax.transaction.UserTransaction interface.

8.3.4. Enterprise Beans Using Container-Managed Transaction Demarcation

This subsection describes the requirements for the Bean Provider of an enterprise bean using
container-managed transaction demarcation.

The enterprise bean’s business methods, message listener methods, business method interceptor
methods, lifecycle callback interceptor methods, or timeout callback methods must not use any
resource-manager specific transaction management methods that would interfere with the container’s
demarcation of transaction boundaries. For example, the enterprise bean methods must not use the
following methods of the java.sql.Connection interface: commit, setAutoCommit, and rollback; or the
following methods of the javax.jms.Session interface: commit and rollback .

The enterprise bean’s business methods, message listener methods, business method interceptor
methods, lifecycle callback interceptor methods, or timeout callback methods must not attempt to
obtain or use the javax.transaction.UserTransaction interface.

The following code segments illustrate a business method in an enterprise bean with container-
managed transaction demarcation. The business method updates two databases using JDBC™
connections. The container provides transaction demarcation as specified by the transaction
attribute.50

@Stateless public class MySessionBean implements MySession \{

8.3. Bean Provider’s Responsibilities

164 Jakarta Enterprise Beans, Core Features DRAFT

#a10269

...

@TransactionAttribute(REQUIRED)

public void someMethod(...) \{

java.sql.Connection con1;

java.sql.Connection con2;

java.sql.Statement stmt1;

java.sql.Statement stmt2;

try \{

// obtain con1 and con2 connection objects

con1 = ...;

con2 = ...;

stmt1 = con1.createStatement();

stmt2 = con2.createStatement();

//

8.3. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 165

 // Perform some updates on con1 and con2.
The container

 // automatically enlists con1 and con2 with
the

// container-managed transaction.

//

stmt1.executeQuery(...);

stmt1.executeUpdate(...);

stmt2.executeQuery(...);

stmt2.executeUpdate(...);

stmt1.executeUpdate(...);

stmt2.executeUpdate(...);

} finally \{

// release connections

con1.close();

con2.close();

8.3. Bean Provider’s Responsibilities

166 Jakarta Enterprise Beans, Core Features DRAFT

...

}

}

...

}

8.3.4.1. javax.ejb.SessionSynchronization Interface

A stateful session bean with container-managed transaction demarcation can optionally implement
the javax.ejb.SessionSynchronization interface or use the session synchronization annotations. Their
use is described in Subsection See The Session Synchronization Notifications for Stateful Session Beans.

8.3.4.2. javax.ejb.EJBContext.setRollbackOnly Method

An enterprise bean with container-managed transaction demarcation can use the setRollbackOnly
method of its EJBContext object to mark the transaction such that the transaction can never commit.
Typically, an enterprise bean marks a transaction for rollback to protect data integrity before throwing
an application exception, if the application exception class has not been specified to automatically
cause the container to rollback the transaction.

For example, an AccountTransfer bean which debits one account and credits another account could
mark a transaction for rollback if it successfully performs the debit operation, but encounters a failure
during the credit operation.

8.3.4.3. javax.ejb.EJBContext.getRollbackOnly method

An enterprise bean with container-managed transaction demarcation can use the getRollbackOnly
method of its EJBContext object to test if the current transaction has been marked for rollback. The
transaction might have been marked for rollback by the enterprise bean itself, by other enterprise
beans, or by other components (outside of the EJB specification scope) of the transaction processing
infrastructure.

8.3.5. Use of JMS APIs in Transactions

The Bean Provider should not make use of the JMS request/reply paradigm (sending of a JMS message,
followed by the synchronous receipt of a reply to that message) within a single transaction. Because a
JMS message is typically not delivered to its final destination until the transaction commits, the receipt

8.3. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 167

Ejb.html#a736

of the reply within the same transaction will not take place.

Because the container manages the transactional enlistment of JMS sessions on behalf of a bean, the
parameters of the createSession(boolean transacted, int acknowledgeMode) ,
createQueueSession(boolean transacted, int acknowledgeMode) and createTopicSession(boolean
transacted, int acknowledgeMode) methods are ignored. It is recommended that the Bean Provider
specify that a session is transacted, but provide 0 for the value of the acknowledgment mode.

The Bean Provider should not use the JMS acknowledge method either within a transaction or within
an unspecified transaction context. Message acknowledgment in an unspecified transaction context is
handled by the container. See Handling of Methods that Run with “an unspecified transaction context”
describes some of the techniques that the container can use for the implementation of a method
invocation with an unspecified transaction context.

8.3.6. Specification of a Bean’s Transaction Management Type

By default, a session bean or message-driven bean has container managed transaction demarcation if
the transaction management type is not specified. The Bean Provider of a session bean or a message-
driven bean can use the TransactionManagement annotation to declare whether the session bean or
message-driven bean uses bean-managed or container-managed transaction demarcation. The value of
the TransactionManagement annotation is either CONTAINER or BEAN . The TransactionManagement
annotation is applied to the enterprise bean class.

Alternatively, the Bean Provider can use the transaction-type deployment descriptor element to specify
the bean’s transaction management type. If the deployment descriptor is used, it is only necessary to
explicitly specify the bean’s transaction management type if bean-managed transaction is used.

The transaction management type of a bean is determined by the Bean Provider. The Application
Assembler is not permitted to use the deployment descriptor to override a bean’s transaction
management type regardless of whether it has been explicitly specified or defaulted by the Bean
Provider. (See Chapter See Deployment Descriptor for information about the deployment descriptor.)

8.3.7. Specification of the Transaction Attributes for a Bean’s Methods

The Bean Provider of an enterprise bean with container-managed transaction demarcation may
specify the transaction attributes for the enterprise bean’s methods. By default, the value of the
transaction attribute for a method of a bean with container-managed transaction demarcation is the
REQUIRED transaction attribute, and the transaction attribute does not need to be explicitly specified
in this case.

A transaction attribute is a value associated with each of the following methods

a method of a bean’s business interface

a method exposed through the bean class no-interface view

a message listener method of a message-driven bean

8.3. Bean Provider’s Responsibilities

168 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a2889
Ejb.html#a5804

a timeout callback method

a stateless or singleton session bean’s web service endpoint method

for beans written to the EJB 2.1 and earlier client view, a method of a session bean’s home or
component interface

a PostConstruct or PreDestroy lifecycle callback interceptor method of a singleton session bean

a PostConstruct , PreDestroy , PrePassivate or PostActivate lifecycle callback interceptor method of a
stateful session bean

The transaction attribute specifies how the container must manage transactions for a method when a
client invokes the method.

Transaction attributes are specified for the following methods:

For a session bean written to the EJB 3.x client view API, the transaction attributes are specified for
those methods of the session bean class that correspond to the bean’s business interface, the direct and
indirect superinterfaces of the business interface, methods exposed through the bean class no-
interface view, and for the timeout callback methods, if any.

For a stateless session bean or singleton session bean that provides a web service client view, the
transaction attributes are specified for the bean’s web service endpoint methods, and for the timeout
callback methods, if any.

For a singleton session bean, the transaction attributes are specified for the PostConstruct and
PreDestroy lifecycle callback interceptor methods, if any. In order to specify the transaction attribute
for a PostConstuct or PreDestroy method of a singleton session bean, the transaction attribute must be
specified for the method(s) on the bean class, rather than for a superclass or PostConstruct or
PreDestroy interceptor method.

For a stateful session bean, the transaction attributes are specified for the PostConstruct, PreDestroy,
PrePassivate or PostActivate lifecycle callback interceptor methods, if any. In order to specify the
transaction attribute for a PostConstruct, PreDestroy, PrePassivate or PostActivate method of a stateful
session bean, the transaction attribute must be specified for the method(s) on the bean class, rather
than for a superclass or PostConstruct, PreDestroy, PrePassivate or PostActivate interceptor method.

For a message-driven bean, the transaction attributes are specified for the message listenermethods on
the message-driven bean class and for the timeout callback methods, if any.

For a session bean written to the EJB 2.1 and earlier client view, the transaction attributes are specified
for the methods of the component interface and all the direct and indirect superinterfaces of the
component interface, excluding the methods of the javax.ejb.EJBObject or javax.ejb.EJBLocalObject
interface; and for the timeout callback methods, if any. Transaction attributes must not be specified for
the methods of a session bean’s home interface.

By default, if a TransactionAttribute annotation is not specified for a method of an enterprise bean

8.3. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 169

with container-managed transaction demarcation, the value of the transaction attribute for the
method is defined to be REQUIRED . The rules for the specification of transaction attributes are defined
in See Specification of Transaction Attributes with Metadata Annotations.

The Bean Provider may use the deployment descriptor as an alternative to metadata annotations to
specify the transaction attributes or as a means to supplement or override metadata annotations for
transaction attributes. If a transaction attribute value is not specified in the deployment descriptor, it is
assumed that the transaction attribute specified in annotations applies, or—in the case that no
annotation has been specified—that the value is Required .

The Application Assembler is permitted to override the transaction attribute values using the bean’s
deployment descriptor. The Deployer is also permitted to override the transaction attribute values at
deployment time. Caution should be exercised when overriding the transaction attributes of an
application, as the transactional structure of an application is typically intrinsic to the semantics of the
application.

Enterprise JavaBeans defines the following values for the TransactionAttribute metadata annotation:

MANDATORY

REQUIRED

REQUIRES_NEW

SUPPORTS

NOT_SUPPORTED

NEVER

The deployment descriptor values that correspond to these annotation values are the following:

Mandatory

Required

RequiresNew

Supports

NotSupported

8.3. Bean Provider’s Responsibilities

170 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a2583

Never

 _In this chapter, we use the
TransactionAttribute annotation values to refer to transaction
attributes. As noted, however, the deployment descriptor may be used._

Refer to Subsection See Container-Managed Transaction Demarcation for Business Methods for the
specification of how the value of the transaction attribute affects the transaction management
performed by the container.

For a message-driven bean’s message listener methods (or interface), only the REQUIRED and
NOT_SUPPORTED transaction attributes may be used.

For an enterprise bean’s timeout callback methods, only the REQUIRED , REQUIRES_NEW and
NOT_SUPPORTED transaction attributes may be used.

For a session bean’s asynchronous business methods, only the REQUIRED, REQUIRES_NEW, and
NOT_SUPPORTED transaction attributes may be used.

For a singleton session bean’s PostConstruct and PreDestroy lifecycle callback interceptor methods,
only the REQUIRED , REQUIRES_NEW , and NOT_SUPPORTED transaction attributes may be used.

For a stateful session bean’s PostConstruct, PreDestroy, PrePassivate or PostActivate lifecycle callback
interceptor methods, only the REQUIRES_NEW and NOT_SUPPORTED transaction attributes may be
used.

If an enterprise bean implements the javax.ejb.SessionSynchronization interface or uses any of the
session synchronization annotations, only the following values may be used for the transaction
attributes of the bean’s methods: REQUIRED , REQUIRES_NEW , MANDATORY51 .

The above restriction is necessary to ensure that the enterprise bean is invoked only in a transaction. If
the bean were invoked without a transaction, the container would not be able to send the transaction
synchronization calls.

8.3.7.1. Specification of Transaction Attributes with Metadata Annotations

The following rules apply for the specification of transaction attributes using Java language metadata
annotations.

The TransactionAttribute annotation is used to specify a transaction attribute. The value of the
transaction attribute annotation is given by the enum TransactionAttributeType:

public enum TransactionAttributeType \{

8.3. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 171

Ejb.html#a2755
#a10270

MANDATORY,

REQUIRED,

REQUIRES_NEW,

SUPPORTS,

NOT_SUPPORTED,

NEVER

}

The transaction attributes for the methods of a bean class may be specified on the class, the business
methods of the class, or both.

Specifying the TransactionAttribute annotation on the bean class means that it applies to all applicable
business interface methods of the class. If the transaction attribute type is not specified, it is assumed
to be REQUIRED . The absence of a transaction attribute specification on the bean class is equivalent to
the specification of TransactionAttribute(REQUIRED) on the bean class.

A transaction attribute may be specified on a method of the bean class to override the transaction
attribute value explicitly or implicitly specified on the bean class.

If the bean class has superclasses, the following additional rules apply.

A transaction attribute specified on a superclass S applies to the business methods defined by S . If a
class-level transaction attribute is not specified on S , it is equivalent to specification of
TransactionAttribute(REQUIRED) on S .

A transaction attribute may be specified on a business method M defined by class S to override for
method M the transaction attribute value explicitly or implicitly specified on the class S .

If a method M of class S overrides a business method defined by a superclass of S , the transaction
attribute of M is determined by the above rules as applied to class S .

Example:

@TransactionAttribute(SUPPORTS)

8.3. Bean Provider’s Responsibilities

172 Jakarta Enterprise Beans, Core Features DRAFT

public class SomeClass \{

public void aMethod () \{...}

public void bMethod () \{...}

...

}

@Stateless public class ABean extends SomeClass implements A \{

public void aMethod () \{...}

@TransactionAttribute(REQUIRES_NEW)

public void cMethod () \{...}

...

}

Assuming aMethod , bMethod , cMethod are methods of interface A , their transaction attributes are
REQUIRED , SUPPORTS , and REQUIRES_NEW respectively.

8.3.7.2. Specification of Transaction Attributes in the Deployment Descriptor

The following rules apply for the specification of transaction attributes in the deployment descriptor.
(See Section See Deployment Descriptor XML Schema for the complete syntax of the deployment
descriptor.)

Note that even in the absence of the use of annotations, it is not necessary to explicitly specify
transaction attributes for all of the methods listed in section See Specification of the Transaction
Attributes for a Bean’s Methods. If a transaction attribute is not specified for a method in an EJB
deployment descriptor, the transaction attribute defaults to Required .

If the deployment descriptor is used to override annotations, and transaction attributes are not
specified for some methods, the values specified in annotations (whether explicit or defaulted) will
apply for those methods.

8.3. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 173

Ejb.html#a5910
Ejb.html#a2538
Ejb.html#a2538

Use of the container-transaction element

The container-transaction element may be used to define the transaction attributes for the following
methods:

business interface methods

home interface methods

component interface methods

message-listener interface methods

no-interface view methods

web service endpoint methods

singleton PostConstruct and PreDestroy methods

stateful session bean PostConstruct, PreDestroy, PrePassivate or PostActivate methods (see limitations)

timeout callback methods

Each container-transaction element consists of a list of one or more method elements, and the trans-
attribute element. The container-transaction element specifies that all the listed methods are assigned
the specified transaction attribute value. It is required that all the methods specified in a single
container-transaction element be methods of the same enterprise bean.

The method element uses the ejb-name, method-intf, method-name, and method-params elements to
denote one or more methods.

The optional method-intf element can be used to differentiate between methods with the same name
and signature that are multiply defined across the business, component, and home interfaces, web
service endpoint, no-interface view, singleton and stateful session bean lifecycle callbacks, and/or
timeout callbacks. However, if the same method is a method of a local business interface, local
component interface, or no-interface view, the same transaction attribute applies to the method for all
of them. Likewise, if the same method is a method of both a remote business interface and the remote
component interface, the same transaction attribute applies to the method for both interfaces.

There are three legal styles of composing the method element:

8.3. Bean Provider’s Responsibilities

174 Jakarta Enterprise Beans, Core Features DRAFT

 +
<method> +
<ejb-name>EJBNAME</ejb-name> +
<method-name>*</method-name> +
</method> +
 +
This style is used to specify a default value of the transaction
attribute for the following methods, if any, of the specified enterprise
bean for which there is no Style 2 or Style 3 element specified:

All methods of the business, home, or component interface

All no-interface view methods

All message listener methods

Web service endpoint methods

Singleton PostConstruct and PreDestroy methods

All timeout callback methods

There must be at most one container-transaction element that uses the Style 1 method element for a
given enterprise bean, unless the method-intf element is used with this style.

This style may be used for stateful session bean lifecycle callback methods to specify their transaction
attributes if used with the method-intf element value LifecycleCallback.

 +
<method> +
<ejb-name>EJBNAME</ejb-name> +
<method-name>METHOD</method-name> +
</method> +
 +
This style is used for referring to a specified method of a business,
home, or component interface method; no-interface view method; message
listener method; web service endpoint method; singleton PostConstruct
and PreDestroy methods; or timeout callback method of the specified
enterprise bean. If there are multiple methods with the same overloaded
name, this style refers to all the methods with the same name.

There must be at most one container-transaction element that uses the Style 2 method element for a
given method name, unless the method-intf element is used with this style. If there is also a container-
transaction element that uses Style 1 element for the same bean, the value specified by the Style 2
element takes precedence.

8.3. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 175

This style may be used to refer to stateful session bean PostConstruct, PreDestroy, PrePassivate or
PostActivate methods to specify their transaction attributes if any of the following is true:

There is only one method with this name in the specified enterprise bean

All overloaded methods with this name in the specified enterprise bean are lifecycle callback methods

The method-intf element is specified and it contains LifecycleCallback as the value

 +
<method> +
<ejb-name>EJBNAME</ejb-name> +
<method-name>METHOD</method-name> +
<method-params> +
<method-param>PARAMETER_1</method-param> +
... +
<method-param>PARAMETER_N</method-param> +
</method-params> +
</method> +
 +
This style is used to refer to a single method within a set of methods
with an overloaded name. If there is also a container-transaction
element that uses the Style 2 element for the method name, or the Style
1 element for the bean, the value specified by the Style 3 element takes
precedence.

The following is an example of the specification of the transaction attributes in the deployment
descriptor. The updatePhoneNumber method of the EmployeeRecord enterprise bean is assigned the
transaction attribute Mandatory; all other methods of the EmployeeRecord bean are assigned the
attribute Required. All the methods of the enterprise bean AardvarkPayroll are assigned the attribute
RequiresNew.

<ejb-jar>

...

<assembly-descriptor>

...

<container-transaction>

8.3. Bean Provider’s Responsibilities

176 Jakarta Enterprise Beans, Core Features DRAFT

<method>

<ejb-name>EmployeeRecord</ejb-name>

<method-name>*</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

<container-transaction>

<method>

<ejb-name>EmployeeRecord</ejb-name>

<method-name>updatePhoneNumber</method-name>

</method>

<trans-attribute>Mandatory</trans-attribute>

</container-transaction>

<container-transaction>

8.3. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 177

<method>

<ejb-name>AardvarkPayroll</ejb-name>

<method-name>*</method-name>

</method>

<trans-attribute>RequiresNew</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>

8.4. Application Assembler’s Responsibilities
This section describes the view and responsibilities of the Application Assembler.

There is no mechanism for an Application Assembler to affect enterprise beans with bean-managed
transaction demarcation. The Application Assembler must not define transaction attributes for an
enterprise bean with bean-managed transaction demarcation.

The Application Assembler can use the deployment descriptor transaction attribute mechanism
described above to override or change the transaction attributes for enterprise beans using container-
managed transaction demarcation.

The Application Assembler should exercise caution in the changing the transaction attributes, as the
behavior specified by the transaction attributes is typically an intrinsic part of the semantics of an
application.

8.5. Deployer’s Responsibilities
The Deployer is permitted to override or change the values of transaction attributes at deployment
time.

The Deployer should exercise caution in the changing the transaction attributes, as the behavior

8.4. Application Assembler’s Responsibilities

178 Jakarta Enterprise Beans, Core Features DRAFT

specified by the transaction attributes is typically an intrinsic part of the semantics of an application.

For applications written to the EJB 2.1 specification (and earlier), the Deployer is responsible for
ensuring that the methods of the deployed enterprise beans with container-managed transaction
demarcation have been assigned a transaction attribute if this has not be specified in the deployment
descriptor.

8.6. Container Provider Responsibilities
This section defines the responsibilities of the Container Provider.

Every client method invocation on a session bean via the bean’s business interface (and/or home and
component interface), no-interface view, web service endpoint, and every invocation of a message
listener method on a message-driven bean is interposed by the container, and every connection to a
resource manager used by an enterprise bean is obtained via the container. This managed execution
environment allows the container to affect the enterprise bean’s transaction management.

This does not imply that the container must interpose on every resource manager access performed by
the enterprise bean. Typically, the container interposes only on the resource manager connection
factory (e.g. a JDBC data source) JNDI look up by registering the container-specific implementation of
the resource manager connection factory object. The resource manager connection factory object
allows the container to obtain the javax.transaction.xa.XAResource interface as described in the JTA
specification and pass it to the transaction manager. After the set up is done, the enterprise bean
communicates with the resource manager without going through the container.

8.6.1. Bean-Managed Transaction Demarcation

This subsection defines the container’s responsibilities for the transaction management of enterprise
beans with bean-managed transaction demarcation.

Bean-managed transaction demarcation can be used with session and message-driven beans.

The container must manage client invocations to an enterprise bean instance with bean-managed
transaction demarcation as follows. When a client invokes a business method via one of the enterprise
bean’s client views, the container suspends any transaction that may be associated with the client
request. If there is a transaction associated with the instance (this would happen if a stateful session
bean instance started the transaction in some previous business method), the container associates the
method execution with this transaction. If there are interceptor methods associated with the bean
instances, these actions are taken before the interceptor methods are invoked.

The container must make the javax.transaction.UserTransaction interface available to the enterprise
bean’s business method, message listener method, interceptor method, or timeout callback method via
dependency injection into the enterprise bean class or interceptor class, through lookup via the
javax.ejb.EJBContext interface, and in the JNDI naming context under java:comp/UserTransaction.
When an instance uses the javax.transaction.UserTransaction interface to demarcate a transaction, the
container must enlist all the resource managers used by the instance between the begin and

8.6. Container Provider Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 179

commit—or rollback—methods with the transaction.52 When the instance attempts to commit the
transaction, the container is responsible for the global coordination of the transaction commit53.

In the case of a stateful session bean, it is possible that the business method or interceptor method that
started a transaction completes without committing or rolling back the transaction. In such a case, the
container must retain the association between the transaction and the instance across multiple client
calls until the instance commits or rolls back the transaction. When the client invokes the next
business method, the container must invoke the business method (and any applicable interceptor
methods for the bean) in this transaction context.

If a stateless or singleton session bean instance starts a transaction in a business method or interceptor
method, it must commit the transaction before the business method (or all its interceptor methods)
returns. The container must detect the case in which a transaction was started, but not completed, in
the business method or interceptor method for the business method, and handle it as follows:

Log this as an application error to alert the System Administrator.

Roll back the started transaction.

If this a stateless session bean, discard the bean instance.54

Throw the javax.ejb.EJBException55 . If the EJB 2.1 client view is used, the container should throw
thejava.rmi.RemoteException if the client is a remote client, and the javax.ejb.EJBException if the client
is a local client.

If a message-driven bean instance starts a transaction in a message listener method or interceptor
method, it must commit the transaction before the message listener method (or all its interceptor
methods) returns. The container must detect the case in which a transaction was started, but not
completed, in a message listener method or interceptor method for the message listener method, and
handle it as follows:

Log this as an application error to alert the System Administrator.

Roll back the started transaction.

Discard the instance of the message-driven bean.

If a session bean or message-driven bean instance starts a transaction in a timeout callback method, it
must commit the transaction before the timeout callback method returns. The container must detect
the case in which a transaction was started, but not completed, in a timeout callback method, and
handle it as follows:

Log this as an application error to alert the System Administrator.

Roll back the started transaction.

If this is a stateless session bean or message-driven bean, discard the instance of the bean.

8.6. Container Provider Responsibilities

180 Jakarta Enterprise Beans, Core Features DRAFT

#a10271
#a10272
#a10273
#a10274

The actions performed by the container for an instance with bean-managed transaction are
summarized by the following table. T1 is a transaction associated with a client request, T2 is a
transaction that is currently associated with the instance (i.e. a transaction that was started but not
completed by a previous business method).

===

Container’s Actions for Methods of Beans with Bean-Managed Transaction

Client’s transaction

Transaction currently associated with instance

Transaction associated

with the method

none

none

none

T1

none

none

none

T2

T2

T1

T2

T2

The following items describe each entry in the table:

If the client request is not associated with a transaction and the instance is not associated with a
transaction, or if the bean is a message-driven bean, the container invokes the instance with an
unspecified transaction context.

If the client request is associated with a transaction T1, and the instance is not associated with a
transaction, the container suspends the client’s transaction association and invokes the method with

8.6. Container Provider Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 181

an unspecified transaction context. The container resumes the client’s transaction association (T1)
when the method (together with any associated interceptor methods) completes. This case can never
happen for a message-driven bean or for the invocation of a web service endpoint method of a session
bean.

If the client request is not associated with a transaction and the instance is already associated with a
transaction T2, the container invokes the instance with the transaction that is associated with the
instance (T2). This case can never happen for a stateless session bean, singleton session bean, or a
message-driven bean: it can only happen for a stateful session bean.

If the client is associated with a transaction T1, and the instance is already associated with a
transaction T2, the container suspends the client’s transaction association and invokes the method
with the transaction context that is associated with the instance (T2). The container resumes the
client’s transaction association (T1) when the method (together with any associated interceptor
methods) completes. This case can never happen for a stateless session bean, singleton session bean, or
a message-driven bean: it can only happen for a stateful session bean.

The container must allow the enterprise bean instance to serially perform several transactions in a
method.

When an instance attempts to start a transaction using the begin method of the
javax.transaction.UserTransaction interface while the instance has not committed the previous
transaction, the container must throw the javax.transaction.NotSupportedException in the begin
method.

The container must throw the java.lang.IllegalStateException if an instance of a bean with bean-
managed transaction demarcation attempts to invoke the setRollbackOnly or getRollbackOnly method
of the javax.ejb.EJBContext interface.

8.6.2. Container-Managed Transaction Demarcation for Session Beans

The container is responsible for providing the transaction demarcation for the session beans declared
with container-managed transaction demarcation. For these enterprise beans, the container must
demarcate transactions as specified by the transaction attribute values specified using metadata
annotations in the bean class or specified in the deployment descriptor.

8.6.2.1. Session Synchronization Callbacks

If a session bean class implements the javax.ejb.SessionSynchronization interface or uses the session
synchronization annotations, the container must invoke the afterBegin, beforeCompletion, and
afterCompletion callbacks on the instance as part of the transaction commit protocol. If a stateful
session bean’s PostConstruct, PreDestroy, PrePassivate or PostActivate lifecycle callback interceptor
methods are invoked in the scope of a transaction, session synchronization callbacks for such
transactions are not called on the bean instance.

The container invokes the afterBegin method on an instance before it invokes the first business

8.6. Container Provider Responsibilities

182 Jakarta Enterprise Beans, Core Features DRAFT

method in a transaction.

The container invokes the beforeCompletion method to give the enterprise bean instance the last
chance to cause the transaction to rollback. The instance may cause the transaction to roll back by
invoking the EJBContext.setRollbackOnly method.

The container invokes the afterCompletion(boolean committed) method after the completion of the
transaction commit protocol to notify the enterprise bean instance of the transaction outcome.

8.6.3. Container-Managed Transaction Demarcation for Business Methods

The following subsections define the responsibilities of the container for managing the invocation of
an enterprise bean business method when the method is invoked via the enterprise bean’s business
interface (and/or home or component interface), no-interface view, or web service endpoint. The
container’s responsibilities depend on the value of the transaction attribute.

8.6.3.1. NOT_SUPPORTED

The container invokes an enterprise bean method whose transaction attribute is set to the
NOT_SUPPORTED value with an unspecified transaction context.

If a client calls with a transaction context, the container suspends the association of the transaction
context with the current thread before invoking the enterprise bean’s business method. The container
resumes the suspended association when the business method has completed. The suspended
transaction context of the client is not passed to the resource managers or other enterprise bean
objects that are invoked from the business method.

If the business method invokes other enterprise beans, the container passes no transaction context
with the invocation.

Refer to Subsection See Handling of Methods that Run with “an unspecified transaction context” for
more details of how the container can implement this case.

8.6.3.2. REQUIRED

The container must invoke an enterprise bean method whose transaction attribute is set to the
REQUIRED value with a valid transaction context.

If a client invokes the enterprise bean’s method while the client is associated with a transaction
context, the container invokes the enterprise bean’s method in the client’s transaction context, unless
the method is an asynchronous method. The client’s transaction context does not propagate with an
asynchronous method invocation. The semantics of the REQUIRED transaction attribute for an
asynchronous method are the same as REQUIRES_NEW.

If the client invokes the enterprise bean’s method while the client is not associated with a transaction
context, the container automatically starts a new transaction before delegating a method call to the
enterprise bean business method. The container automatically enlists all the resource managers

8.6. Container Provider Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 183

Ejb.html#a2889

accessed by the business method with the transaction. If the business method invokes other enterprise
beans, the container passes the transaction context with the invocation. The container attempts to
commit the transaction when the business method has completed. The container performs the commit
protocol before the method result is sent to the client.

8.6.3.3. SUPPORTS

The container invokes an enterprise bean method whose transaction attribute is set to SUPPORTS as
follows.

If the client calls with a transaction context, the container performs the same steps as described in the
REQUIRED case.

If the client calls without a transaction context, the container performs the same steps as described in
the NOT_SUPPORTED case.

The SUPPORTS transaction attribute must be used with caution. This is because of the different
transactional semantics provided by the two possible modes of execution. Only the enterprise beans
that will execute correctly in both modes should use the SUPPORTS transaction attribute.

8.6.3.4. REQUIRES_NEW

The container must invoke an enterprise bean method whose transaction attribute is set to
REQUIRES_NEW with a new transaction context.

If the client invokes the enterprise bean’s method while the client is not associated with a transaction
context, the container automatically starts a new transaction before delegating a method call to the
enterprise bean business method. The container automatically enlists all the resource managers
accessed by the business method with the transaction. If the business method invokes other enterprise
beans, the container passes the transaction context with the invocation. The container attempts to
commit the transaction when the business method has completed. The container performs the commit
protocol before the method result is sent to the client.

If a client calls with a transaction context, the container suspends the association of the transaction
context with the current thread before starting the new transaction and invoking the business method.
The container resumes the suspended transaction association after the business method and the new
transaction have been completed.

8.6.3.5. MANDATORY

The container must invoke an enterprise bean method whose transaction attribute is set to
MANDATORY in a client’s transaction context. The client is required to call with a transaction context.

If the client calls with a transaction context, the container performs the same steps as described in the
REQUIRED case.

If the client calls without a transaction context, the container throws the

8.6. Container Provider Responsibilities

184 Jakarta Enterprise Beans, Core Features DRAFT

javax.ejb.EJBTransactionRequiredException56 . If the EJB 2.1 client view is used, the container throws
the javax.transaction.TransactionRequiredException exception if the client is a remote client, and the
javax.ejb.TransactionRequiredLocalException if the client is a local client.

8.6.3.6. NEVER

The container invokes an enterprise bean method whose transaction attribute is set to NEVER without
a transaction context defined by the EJB specification. The client is required to call without a
transaction context.

If the client calls with a transaction context, the container throws the javax.ejb.EJBException57 . If the
EJB 2.1 client view is used, the container throws the java.rmi.RemoteException exception if the client is
a remote client, and the javax.ejb.EJBException if the client is a local client.

If the client calls without a transaction context, the container performs the same steps as described in
the NOT_SUPPORTED case.

8.6.3.7. Transaction Attribute Summary

The following table provides a summary of the transaction context that the container passes to the
business method and resource managers used by the business method, as a function of the transaction
attribute and the client’s transaction context. T1 is a transaction passed with the client request, while
T2 is a transaction initiated by the container.

===

Transaction Attribute Summary

Transaction attribute

Client’s transaction

Transaction associated with business method

Transaction associated

with resource managers

NOT_SUPPORTED

none

none

none

T1

none

8.6. Container Provider Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 185

#a10275
#a10276

none

REQUIRED

none

T2

T2

T1

T1 58

T1

SUPPORTS

none

none

none

T1

T1

T1

REQUIRES_NEW

none

T2

T2

T1

T2

T2

MANDATORY

none

error

8.6. Container Provider Responsibilities

186 Jakarta Enterprise Beans, Core Features DRAFT

#a10277

N/A

T1

T1

T1

NEVER

none

none

none

T1

error

N/A

If the enterprise bean’s business method invokes other enterprise beans via their business interfaces
or home and component interfaces, the transaction indicated in the column “Transaction associated
with business method” will be passed as part of the client context to the target enterprise bean.

See Subsection See Handling of Methods that Run with “an unspecified transaction context” for how
the container handles the “none” case in Table See Transaction Attribute Summary.

8.6.3.8. Handling of setRollbackOnly Method

The container must handle the EJBContext.setRollbackOnly method invoked from a business method
executing with the REQUIRED, REQUIRES_NEW, or MANDATORY transaction attribute as follows:

The container must ensure that the transaction will never commit. Typically, the container instructs
the transaction manager to mark the transaction for rollback.

If the container initiated the transaction immediately before dispatching the business method to the
instance (as opposed to the transaction being inherited from the caller), the container must note that
the instance has invoked the setRollbackOnly method. When the business method invocation
completes, the container must roll back rather than commit the transaction. If the business method has
returned normally or with an application exception, the container must pass the method result or the
application exception to the client after the container performed the rollback.

The container must throw the java.lang.IllegalStateException if the EJBContext.setRollbackOnly
method is invoked from a business method executing with the SUPPORTS, NOT_SUPPORTED, or NEVER
transaction attribute.

8.6. Container Provider Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 187

Ejb.html#a2889
Ejb.html#a2786

8.6.3.9. Handling of getRollbackOnly Method

The container must handle the EJBContext.getRollbackOnly method invoked from a business method
executing with the REQUIRED, REQUIRES_NEW , or MANDATORY transaction attribute.

The container must throw the java.lang.IllegalStateException if the EJBContext.getRollbackOnly
method is invoked from a business method executing with the SUPPORTS, NOT_SUPPORTED, or NEVER
transaction attribute.

8.6.3.10. Handling of getUserTransaction Method

If an instance of an enterprise bean with container-managed transaction demarcation attempts to
invoke the getUserTransaction method of the EJBContext interface, the container must throw the
java.lang.IllegalStateException.

8.6.3.11. Timing of Return Value Marshalling with Regard to Transaction Boundaries

When demarcating a container-managed transaction for a business method invocation through a
remote view or web service view, the container must complete the commit protocol before marshalling
the return value.

8.6.4. Container-Managed Transaction Demarcation for Message-Driven Beans

The container is responsible for providing the transaction demarcation for the message-driven beans
that the Bean Provider declared as with container-managed transaction demarcation. For these
enterprise beans, the container must demarcate transactions as specified by annotations on the bean
class or in the deployment descriptor. (See Chapter See Deployment Descriptor for more information
about the deployment descriptor.)

8.6.5. Container-Managed Transaction Demarcation for Message Listener
Methods

The following subsections define the responsibilities of the container for managing the invocation of a
message-driven bean’s message listener method. The container’s responsibilities depend on the value
of the transaction attribute.

Only the NOT_SUPPORTED and REQUIRED transaction attributes may be used for message-driven bean
message listener methods. The use of the other transaction attributes is not meaningful for message-
driven bean message listener methods because there is no pre-existing client transaction context (
REQUIRES_NEW , SUPPORTS) and no client to handle exceptions (MANDATORY , NEVER).

8.6.5.1. NOT_SUPPORTED

The container invokes a message-driven bean message listener method whose transaction attribute is
set to NOT_SUPPORTED with an unspecified transaction context.

If the message listener method invokes other enterprise beans, the container passes no transaction

8.6. Container Provider Responsibilities

188 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a5804

context with the invocation.

8.6.5.2. REQUIRED

The container must invoke a message-driven bean message listener method whose transaction
attribute is set to REQUIRED with a valid transaction context. The resource managers accessed by the
message listener method within the transaction are enlisted with the transaction. If the message
listener method invokes other enterprise beans, the container passes the transaction context with the
invocation. The container attempts to commit the transaction when the message listener method has
completed.

Messaging systems may differ in quality of service with regard to reliability and transactionality of the
dequeuing of messages.

The requirement for JMS are as follows:

A transaction must be started before the dequeuing of the JMS message and, hence, before the
invocation of the message-driven bean’s onMessage method. The resource manager associated with the
arriving message is enlisted with the transaction as well as all the resource managers accessed by the
onMessage method within the transaction. If the onMessage method invokes other enterprise beans,
the container passes the transaction context with the invocation. The transaction is committed when
the onMessage method has completed. If the onMessage method does not successfully complete or the
transaction is rolled back, message redelivery semantics apply.

8.6.5.3. Handling of setRollbackOnly Method

The container must handle the EJBContext.setRollbackOnly method invoked from a message listener
method executing with the REQUIRED transaction attribute as follows:

The container must ensure that the transaction will never commit. Typically, the container instructs
the transaction manager to mark the transaction for rollback.

The container must note that the instance has invoked the setRollbackOnly method. When the method
invocation completes, the container must roll back rather than commit the transaction.

The container must throw and log the java.lang.IllegalStateException if the EJBContext.setRollbackOnly
method is invoked from a message listener method executing with the NotSupported transaction
attribute

8.6.5.4. Handling of getRollbackOnly Method

The container must handle the EJBContext.getRollbackOnly() method invoked from a message listener
method executing with the REQUIRED transaction attribute.

The container must throw and log the java.lang.IllegalStateException if the
EJBContext.getRollbackOnly method is invoked from a message listener method executing with the
NOT_SUPPORTED transaction attribute.

8.6. Container Provider Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 189

8.6.5.5. Handling of getUserTransaction Method

If an instance of a message-driven bean with container-managed transaction demarcation attempts to
invoke the getUserTransaction method of the EJBContext interface, the container must throw and log
the java.lang.IllegalStateException.

8.6.6. Local Transaction Optimization

The container may use a local transaction optimization for enterprise beans whose metadata
annotations or deployment descriptor indicates that connections to a resource manager are shareable
(see Section See Declaration of Resource Manager Connection Factory References in Deployment
Descriptor). The container manages the use of the local transaction optimization transparently to the
application.

The container may use the optimization for transactions initiated by the container for a bean with
container-managed transaction demarcation and for transactions initiated by a bean with bean-
managed transaction demarcation with the UserTransaction interface. The container cannot apply the
optimization for transactions imported from a different container.

The use of local transaction optimization approach is discussed in See Java™ Platform and See Java
EE™ Connector Architecture.

8.6.7. Handling of Methods that Run with “an unspecified transaction context”

The term “an unspecified transaction context” is used in the EJB specification to refer to the cases in
which the EJB architecture does not fully define the transaction semantics of an enterprise bean
method execution.

This includes the following cases:

The execution of a method of an enterprise bean with container-managed transaction demarcation for
which the value of the transaction attribute is NOT_SUPPORTED, NEVER, or SUPPORTS.

The execution of a PostConstruct or PreDestroy callback method of a stateless session bean with
container-managed transaction demarcation.59

The execution of a PostConstruct or PreDestroy callback method of a message-driven bean with
container-managed transaction demarcation.60

The EJB specification does not prescribe how the container should manage the execution of a method
with an unspecified transaction context—the transaction semantics are left to the container
implementation. Some techniques for how the container may choose to implement the execution of a
method with an unspecified transaction context are as follows (the list is not inclusive of all possible
strategies):

The container may execute the method and access the underlying resource managers without a
transaction context.

8.6. Container Provider Responsibilities

190 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a4245
Ejb.html#a4245
Ejb.html#a9861
Ejb.html#a9863
Ejb.html#a9863
#a10278
#a10279

The container may treat each call of an instance to a resource manager as a single transaction (e.g. the
container may set the auto-commit option on a JDBC connection).

The container may merge multiple calls of an instance to a resource manager into a single transaction.

The container may merge multiple calls of an instance to multiple resource managers into a single
transaction.

If an instance invokes methods on other enterprise beans, and the invoked methods are also
designated to run with an unspecified transaction context, the container may merge the resource
manager calls from the multiple instances into a single transaction.

Any combination of the above.

Since the enterprise bean does not know which technique the container implements, the enterprise
bean must be written conservatively not to rely on any particular container behavior.

A failure that occurs in the middle of the execution of a method that runs with an unspecified
transaction context may leave the resource managers accessed from the method in an unpredictable
state. The EJB architecture does not define how the application should recover the resource managers’
state after such a failure.

8.7. Access from Multiple Clients in the Same
Transaction Context
This section describes a more complex distributed transaction scenario, and specifies the container’s
behavior required for this scenario.

8.7.1. Transaction “Diamond” Scenario with an Entity Object

An entity object61 may be accessed by multiple clients in the same transaction. For example, program
A may start a transaction, call program B and program C in the transaction context, and then commit
the transaction. If programs B and C access the same entity object, the topology of the transaction
creates a diamond.

===

Transaction Diamond Scenario with Entity Object

8.7. Access from Multiple Clients in the Same Transaction Context

DRAFT Jakarta Enterprise Beans, Core Features 191

#a10279

An example (not realistic in practice) is a client program that tries to perform two purchases at two
different stores within the same transaction. At each store, the program that is processing the client’s
purchase request debits the client’s bank account.

It is difficult to implement an EJB server that handles the case in which programs B and C access an
entity object through different network paths. This case is challenging because many EJB servers
implement the EJB container as a collection of multiple processes, running on the same or multiple
machines. Each client is typically connected to a single process. If clients B and C connect to different
EJB container processes, and both B and C need to access the same entity object in the same
transaction, the issue is how the container can make it possible for B and C to see a consistent state of
the entity object within the same transaction62.

The above example illustrates a simple diamond. We use the term diamond to refer to any distributed
transaction scenario in which an entity object is accessed in the same transaction through multiple
network paths.

Note that in the diamond scenario the clients B and C access the entity object serially. Concurrent
access to an entity object in the same transaction context would be considered an application
programming error, and it would be handled in a container-specific way.

Note that the issue of handling diamonds is not unique to the EJB architecture. This issue exists in all
distributed transaction processing systems.

The following subsections define the responsibilities of the EJB Roles when handling distributed
transaction topologies that may lead to a diamond involving an entity object.

8.7.2. Container Provider’s Responsibilities

This subsection specifies the EJB container’s responsibilities with respect to the diamond case
involving an entity objectSee Component contract and client view of entity beans are described in the
EJB Optional Features document [40.].

The EJB specification requires that the container provide support for local diamonds. In a local
diamond, components A, B, C, and D are deployed in the same EJB container.

The EJB specification does not require an EJB container to support distributed diamonds. In a
distributed diamond, a target entity object is accessed from multiple clients in the same transaction

8.7. Access from Multiple Clients in the Same Transaction Context

192 Jakarta Enterprise Beans, Core Features DRAFT

#a10281
Ejb.html#a10280
Ejb.html#a10280

through multiple network paths, and the clients (programs B and C) are not enterprise beans deployed
in the same EJB container as the target entity object.

If the Container Provider chooses not to support distributed diamonds, and if the container can detect
that a client invocation would lead to a diamond, the container should throw the
javax.ejb.EJBException (or java.rmi.RemoteException if the EJB 2.1 remote client view is used).

8.7.3. Bean Provider’s Responsibilities

This subsection specifies the Bean Provider’s responsibilities with respect to the diamond case
involving an entity objectSee Component contract and client view of entity beans are described in the
EJB Optional Features document [40.].

The diamond case is transparent to the Bean Provider—the Bean Provider does not have to code the
enterprise bean differently for the bean to participate in a diamond. Any solution to the diamond
problem implemented by the container is transparent to the bean and does not change the semantics
of the bean.

8.7.4. Application Assembler and Deployer’s Responsibilities

This subsection specifies the Application Assembler and Deployer’s responsibilities with respect to the
diamond case involving an entity objectSee Component contract and client view of entity beans are
described in the EJB Optional Features document [40.].

The Application Assembler and Deployer should be aware that distributed diamonds might occur. In
general, the Application Assembler should try to avoid creating unnecessary distributed diamonds.

If a distributed diamond is necessary, the Deployer should advise the container (using a container-
specific API) that an entity objects of the entity bean may be involved in distributed diamond
scenarios.

8.7.5. Transaction Diamonds involving Session Objects

While it is illegal for two clients to access the same session object, it is possible for applications that use
session beans to encounter the diamond case. For example, program A starts a transaction and then
invokes two different session objects.

===

Transaction Diamond Scenario with a Session Bean

8.7. Access from Multiple Clients in the Same Transaction Context

DRAFT Jakarta Enterprise Beans, Core Features 193

Ejb.html#a10280
Ejb.html#a10280
Ejb.html#a10280
Ejb.html#a10280

If the session bean instances cache the same data item (e.g. the current balance of Account 100) across
method invocations in the same transaction, most likely the program is going to produce incorrect
results.

The problem may exist regardless of whether the two session objects are the same or different session
beans. The problem may exist (and may be harder to discover) if there are intermediate objects
between the transaction initiator and the session objects that cache the data.

There are no requirements for the Container Provider because it is impossible for the container to
detect this problem.

The Bean Provider and Application Assembler must avoid creating applications that would result in
inconsistent caching of data in the same transaction by multiple session objects.

8.7. Access from Multiple Clients in the Same Transaction Context

194 Jakarta Enterprise Beans, Core Features DRAFT

Chapter 9. Exception Handling

9.1. Overview and Concepts

9.1.1. Application Exceptions

An application exception is an exception defined by the Bean Provider as part of the business logic of
an application. Application exceptions are distinguished from system exceptions in this specification.

Enterprise bean business methods use application exceptions to inform the client of abnormal
application-level conditions, such as unacceptable values of the input arguments to a business method.
A client can typically recover from an application exception. Application exceptions are not intended
for reporting system-level problems.

For example, the Account enterprise bean may throw an application exception to report that a debit
operation cannot be performed because of an insufficient balance. The Account bean should not use an
application exception to report, for example, the failure to obtain a database connection.

An application exception may be defined in the throws clause of a method of an enterprise bean’s
business interface, no-interface view, home interface, component interface, or web service endpoint,
or of a message listener method.

An application exception class can either be a subclass (direct or indirect) of java.lang.Exception (i.e., a
“checked exception”), or a subclass of the java.lang.RuntimeException (an “unchecked exception”). An
application exception may not be a subclass of the java.rmi.RemoteException. The
java.rmi.RemoteException and its subclasses are reserved for system exceptions.

The javax.ejb.CreateException and javax.ejb.RemoveException and subclasses thereof are considered
to be application exceptions. These exceptions are used as standard application exceptions to report
errors to the client from the create and remove methods of the EJBHome and/or EJBLocalHome
interfaces of components written to the EJB 2.1 client view. These exceptions are covered by the rules
on application exceptions that are defined in this chapter.

9.1.2. Goals for Exception Handling

The EJB specification for exception handling is designed to meet these high-level goals:

An application exception thrown by an enterprise bean instance should be reported to the client
precisely (i.e., the client gets the same exception)63.

An application exception thrown by an enterprise bean instance should not automatically cause a
client’s transaction to be marked for rollback unless the application exception was defined to cause
transaction rollback. The client should typically be given a chance to recover from an application
exception.

9.1. Overview and Concepts

DRAFT Jakarta Enterprise Beans, Core Features 195

#a10282

An unexpected exception that may have left the instance’s state variables and/or underlying persistent
data in an inconsistent state can be handled safely.

9.2. Bean Provider’s Responsibilities
This section describes the view and responsibilities of the Bean Provider with respect to exception
handling.

9.2.1. Application Exceptions

The Bean Provider defines application exceptions. Application exception that is a checked exception is
defined as such by being listed in the throws clause of a method on the bean’s business interface, no-
interface view, home interface, component interface, or web service endpoint. An application
exception that is an unchecked exception is defined as an application exception by annotating it with
the ApplicationException metadata annotation, or denoting it in the deployment descriptor with the
application-exception element.

Because application exceptions are intended to be handled by the client, and not by the System
Administrator, they should be used only for reporting business logic exceptions, not for reporting
system level problems.

Certain messaging types may define application exceptions in their message listener interfaces. The
resource adapter in use for the particular messaging type determines how the exception is processed.
See See Java EE™.

The Bean Provider is responsible for throwing the appropriate application exception from the business
method to report a business logic exception to the client.

An application exception does not automatically result in marking the transaction for rollback unless
the ApplicationException annotation is applied to the exception class and is specified with the rollback
element value true or the application-exception deployment descriptor element for the exception
specifies the rollback element as true64 . The rollback subelement of the application-exception
deployment descriptor element may be explicitly specified to override the rollback value specified or
defaulted by the ApplicationException annotation.

The Bean Provider must do one of the following to ensure data integrity before throwing an
application exception from an enterprise bean instance:

Ensure that the instance is in a state such that a client’s attempt to continue and/or commit the
transaction does not result in loss of data integrity. For example, the instance throws an application
exception indicating that the value of an input parameter was invalid before the instance performed
any database updates.

If the application exception is not specified to cause transaction rollback, mark the transaction for
rollback using the EJBContext.setRollbackOnly method before throwing the application exception.
Marking the transaction for rollback will ensure that the transaction can never commit.

9.2. Bean Provider’s Responsibilities

196 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9863
#a10283

The Bean Provider is also responsible for using the standard EJB application exceptions
(javax.ejb.CreateException, javax.ejb.RemoveException, javax.ejb.FinderException, and subclasses
thereof) for beans written to the EJB 2.1 and earlier client view as described in Subsections ../Optional/
Chapters.html#UNKNOWN and ../Optional/Chapters.html#UNKNOWN.

Bean Providers may define subclasses of the standard EJB application exceptions and throw instances
of the subclasses in the enterprise bean methods. A subclass will typically provide more information to
the client that catches the exception.

By default, designating an unchecked exception as an application exception also applies to subclasses
of that exception. This inheritance behavior can be disabled by setting the inherited element of the
ApplicationException annotation to false or by setting the inherited element of the application-
exception deployment descriptor element to false.

Example:

@ApplicationException(rollback=true)

public class ExceptionA extends RuntimeException

public class ExceptionB extends ExceptionA

@ApplicationException(inherited=false, rollback=false)

public class ExceptionC extends ExceptionB

public class ExceptionD extends ExceptionC

 ExceptionA is an application exception
that causes the transaction to be marked for rollback.

 ExceptionB is an application exception
that causes the transaction to be marked for rollback.

 ExceptionC is an application exception
that does _not_ cause the transaction to be marked for rollback.

 ExceptionD is not an application
exception.

9.2. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 197

../Optional/Chapters.html#UNKNOWN
../Optional/Chapters.html#UNKNOWN
../Optional/Chapters.html#UNKNOWN

9.2.2. System Exceptions

A system exception is an exception that is a java.rmi.RemoteException (or one of its subclasses) or a
RuntimeException that is not an application exception.

This subsection describes how the Bean Provider should handle various system-level exceptions and
errors that an enterprise bean instance may encounter during the execution of a session bean business
method, a message-driven bean message listener method, an interceptor method, or a callback method
(e.g. ejbLoad).

An enterprise bean business method, message listener method, business method interceptor method,
or lifecycle callback interceptor method may encounter various exceptions or errors that prevent the
method from successfully completing. Typically, this happens because the exception or error is
unexpected, or the exception is expected but the EJB Bean Provider does not know how to recover
from it. Examples of such exceptions and errors are: failure to obtain a database connection, JNDI
exceptions, unexpected RemoteException from invocation of other enterprise beans65, unexpected
RuntimeException, JVM errors, and so on.

If the enterprise bean method encounters a system-level exception or error that does not allow the
method to successfully complete, the method should throw a suitable non-application exception that is
compatible with the method’s throws clause. While the EJB specification does not prescribe the exact
usage of the exception, it encourages the Bean Provider to follow these guidelines:

If the bean method encounters a system exception or error, it should simply propagate the error from
the bean method to the container (i.e., the bean method does not have to catch the exception).

If the bean method performs an operation that results in a checked exception66 that the bean method
cannot recover, the bean method should throw the javax.ejb.EJBException that wraps the original
exception.

Any other unexpected error conditions should be reported using the javax.ejb.EJBException.

Note that the javax.ejb.EJBException is a subclass of the java.lang.RuntimeException, and therefore it
does not have to be listed in the throws clauses of the business methods.

The container catches a non-application exception; logs it (which can result in alerting the System
Administrator); and, unless the bean is a message-driven bean, throws the javax.ejb.EJBException67 or,
if the web service client view is used, the java.rmi.RemoteException . If the EJB 2.1 client view is used,
the container throws the java.rmi.RemoteException (or subclass thereof) to the client if the client is a
remote client, or throws the javax.ejb.EJBException (or subclass thereof) to the client if the client is a
local client. In the case of a message-driven bean, the container logs the exception and then throws a
javax.ejb.EJBException that wraps the original exception to the resource adapter. (See See Java EE™).

The exception that is seen by the client is described in section See Container Provider Responsibilities.
It is determined both by the exception that is thrown by the container and/or bean and the client view.

The Bean Provider can rely on the container to perform the following tasks when catching a non-

9.2. Bean Provider’s Responsibilities

198 Jakarta Enterprise Beans, Core Features DRAFT

#a10284
#a10285
#a10286
Ejb.html#a9863
Ejb.html#a3001

application exception:

The transaction in which the bean method participated will be rolled back.

Unless the bean is a singleton session bean, no other method will be invoked on an instance that threw
a non-application exception.

This means that unless the bean is a singleton session bean, the Bean Provider does not have to
perform any cleanup actions before throwing a non-application exception. It is the container that is
responsible for the cleanup.

9.3. Container Provider Responsibilities
This section describes the responsibilities of the Container Provider for handling exceptions. The EJB
architecture specifies the container’s behavior for the following exceptions:

Exceptions from the business methods of session beans, including session bean business method
interceptor methods.

Exceptions from message-driven bean message listener methods and business method interceptor
methods.

Exceptions from timeout callback methods.

Exceptions from other container-invoked callbacks on the enterprise bean.

Exceptions from management of container-managed transaction demarcation.

9.3.1. Exceptions from a Session Bean’s Business Interface Methods and No-
Interface View Methods

Table See Handling of Exceptions Thrown by a Business Interface Method or No-interface View Method
of a Bean with Container-Managed Transaction Demarcation specifies how the container must handle
the exceptions thrown by the methods of the business interface and no-interface view for beans with
container-managed transaction demarcation, including the exceptions thrown by business method
interceptor methods. The table specifies the container’s action as a function of the condition under
which the business method executes and the exception thrown by the method. The table also
illustrates the exception that the client will receive and how the client can recover from the exception.
(Section See Client’s View of Exceptions describes the client’s view of exceptions in detail.) The notation
“AppException” denotes an application exception.

===

Handling of Exceptions Thrown by a Business Interface Method or No-interface View Method of a Bean
with Container-Managed Transaction Demarcation

9.3. Container Provider Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 199

Ejb.html#a3012
Ejb.html#a3012
Ejb.html#a3263

Method condition

Method exception

Container’s action

Client’s view

Bean method runs in the context of the caller’s transaction 68.

This case may happen with Required, Mandatory, and Supports attributes.

AppException

Re-throw AppException.

Mark the transaction for rollback if the application exception is specified as causing rollback.

Receives AppException.

Can attempt to continue computation in the transaction, and eventually commit the transaction unless
the application exception is specified as causing rollback (the commit would also fail if the instance
called setRollbackOnly).

all other exceptions and errors

Log the exception or error 69.

Mark the transaction for rollback.

Discard instance 70.

Throw javax.ejb.EJBTransactionRolledbackException to client. 71

Receives javax.ejb.EJBTransactionRolledbackException

Continuing transaction is fruitless.

Bean method runs in the context of a transaction that the container started immediately before
dispatching the business method.

This case may happen with Required and RequiresNew attributes.

AppException

If the instance called setRollbackOnly() , then rollback the transaction, and re-throw AppException.

If the application exception is specified as causing rollback, then rollback the transaction and then re-

9.3. Container Provider Responsibilities

200 Jakarta Enterprise Beans, Core Features DRAFT

#a10287
#a10288
#a10289
#a10290

throw AppException.

Otherwise, attempt to commit the transaction, and then re-throw AppException.

Receives AppException.

If the client executes in a transaction, the client’s transaction is not marked for rollback, and client can
continue its work.

all other exceptions

Log the exception or error.

Rollback the container-started transaction.

Discard instance.

Throw EJBException to client.72

Receives EJBException.

If the client executes in a transaction, the client’s transaction may or may not be marked for rollback.

Bean method runs with an unspecified transaction context.

This case may happen with the NotSupported, Never, and Supports attributes.

AppException

Re-throw AppException.

Receives AppException.

If the client executes in a transaction, the client’s transaction is not marked for rollback, and client can
continue its work.

all other exceptions

Log the exception or error.

Discard instance.

Throw EJBException to client.73

Receives EJBException.

If the client executes in a transaction, the client’s transaction may or may not be marked for rollback.

Table See Handling of Exceptions Thrown by a Business Interface Method or No-Interface View Method
of a Session Bean with Bean-Managed Transaction Demarcation specifies how the container must

9.3. Container Provider Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 201

#a10291
#a10292
Ejb.html#a3060
Ejb.html#a3060

handle the exceptions thrown by the methods of the business interface or no-interface view for beans
with bean-managed transaction demarcation, including the exceptions thrown by business method
interceptor methods. The table specifies the container’s action as a function of the condition under
which the business interface method executes and the exception thrown by the method. The table also
illustrates the exception that the client will receive and how the client can recover from the exception.
(Section See Client’s View of Exceptions describes the client’s view of exceptions in detail.)

===

Handling of Exceptions Thrown by a Business Interface Method or No-Interface View Method of a
Session Bean with Bean-Managed Transaction Demarcation

Bean method condition

Bean method exception

Container action

Client receives

Bean is a stateful, stateless, or singleton session bean.

AppException

Re-throw AppException

Receives AppException.

all other exceptions

Log the exception or error.

Rollback a transaction that has been started, but not yet completed, by the instance.

Discard instance.74

Throw EJBException to client. 75

Receives EJBException.

9.3.2. Exceptions from Method Invoked via Session Bean’s 2.1 Client View or
through Web Service Client View

Business methods in this context are considered to be the methods defined in the enterprise bean’s
home interface, component interface, or web service endpoint (including superinterfaces of these);
and the following session bean methods: ejbCreate<METHOD>, ejbRemove, and ejbHome<METHOD>
methods.

Table See Handling of Exceptions Thrown by Methods of Web Service Client View or EJB 2.1 Client

9.3. Container Provider Responsibilities

202 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a3263
#a10293
#a10294
Ejb.html#a3080

View of a Bean with Container-Managed Transaction Demarcation specifies how the container must
handle the exceptions thrown by the business methods for beans with container-managed transaction
demarcation, including the exceptions thrown by business method interceptor methods. The table
specifies the container’s action as a function of the condition under which the business method
executes and the exception thrown by the business method. The table also illustrates the exception that
the client will receive and how the client can recover from the exception. (Section See Client’s View of
Exceptions describes the client’s view of exceptions in detail.) The notation “AppException” denotes an
application exception.

===

Handling of Exceptions Thrown by Methods of Web Service Client View or EJB 2.1 Client View of a
Bean with Container-Managed Transaction Demarcation

Method condition

Method exception

Container’s action

Client’s view

Bean method runs in the context of the caller’s transaction 76.

This case may happen with Required, Mandatory, and Supports attributes.

AppException

Re-throw AppException

Mark the transaction for rollback if the application exception is specified as causing rollback.

Receives AppException.

Can attempt to continue computation in the transaction, and eventually commit the transaction unless
the application exception is specified as causing rollback (the commit would also fail if the instance
called setRollbackOnly).

all other exceptions and errors

Log the exception or error 77.

Mark the transaction for rollback.

Discard instance 78.

Throw javax.transaction.TransactionRolledbackException to remote client; throw

9.3. Container Provider Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 203

Ejb.html#a3080
Ejb.html#a3263
Ejb.html#a3263
#a10296
#a10297
#a10298

javax.ejb.TransactionRolledbackLocalException to local client.

Receives javax.transaction.TransactionRolledbackException or
javax.ejb.TransactionRolledbackLocalException

Continuing transaction is fruitless.

Bean method runs in the context of a transaction that the container started immediately before
dispatching the business method.

This case may happen with Required and RequiresNew attributes.

AppException

If the instance called setRollbackOnly() , then rollback the transaction, and re-throw AppException.

If the application exception is specified as causing rollback, then rollback the transaction and then re-
throw AppException.

Otherwise, attempt to commit the transaction, and then re-throw AppException.

Receives AppException.

If the client executes in a transaction, the client’s transaction is not marked for rollback, and client can
continue its work.

all other exceptions

Log the exception or error.

Rollback the container-started transaction.

Discard instance.

Throw RemoteException to remote or web service client 79; throw EJBException to local client.

Receives RemoteException or EJBException.

If the client executes in a transaction, the client’s transaction may or may not be marked for rollback.

Bean method runs with an unspecified transaction context.

This case may happen with the NotSupported, Never, and Supports attributes.

AppException

Re-throw AppException.

Receives AppException.

9.3. Container Provider Responsibilities

204 Jakarta Enterprise Beans, Core Features DRAFT

#a10299

If the client executes in a transaction, the client’s transaction is not marked for rollback, and client can
continue its work.

all other exceptions

Log the exception or error.

Discard instance.

Throw RemoteException to remote or web service client; throw EJBException to local client.

Receives RemoteException or EJBException.

If the client executes in a transaction, the client’s transaction may or may not be marked for rollback.

Table See Handling of Exceptions Thrown by a EJB 2.1 Client View Business Method of a Session Bean
with Bean-Managed Transaction Demarcation specifies how the container must handle the exceptions
thrown by the business methods for beans with bean-managed transaction demarcation, including the
exceptions thrown by business method interceptor methods. The table specifies the container’s action
as a function of the condition under which the business method executes and the exception thrown by
the business method. The table also illustrates the exception that the client will receive and how the
client can recover from the exception. (Section See Client’s View of Exceptions describes the client’s
view of exceptions in detail.)

===

Handling of Exceptions Thrown by a EJB 2.1 Client View Business Method of a Session Bean with Bean-
Managed Transaction Demarcation

Bean method condition

Bean method exception

Container action

Client receives

Bean is a stateful, stateless, or singleton session bean.

AppException

Re-throw AppException

Receives AppException.

all other exceptions

Log the exception or error.

9.3. Container Provider Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 205

Ejb.html#a3129
Ejb.html#a3129
Ejb.html#a3263

Rollback a transaction that has been started, but not yet completed, by the instance.

Discard instance.80

Throw RemoteException to remote or web service client 81; throw EJBException to local client.

Receives RemoteException or EJBException.

9.3.3. Exceptions from AroundConstruct, PostConstruct and PreDestroy
Lifecycle Callbacks

See Handling of Exceptions Thrown by a PostConstruct or PreDestroy Method of a Stateful, Stateless,
Singleton Session Bean or a Message-Driven Bean. specifies how the container must handle the
exceptions that escape interceptor chain for the AroundConstruct, PostConstruct and PreDestroy
methods for session and message-driven beans.

===

Handling of Exceptions Thrown by a PostConstruct or PreDestroy Method of a Stateful, Stateless,
Singleton Session Bean or a Message-Driven Bean.

Bean method condition

Bean method exception

Container action

Bean is a stateful, stateless or singleton session bean, or a message-driven bean

system exceptions

Log the exception or error.

If the bean is a singleton or stateful session bean, rollback any container-started transaction.

Discard instance.

9.3.4. Exceptions from Message-Driven Bean Message Listener Methods

This section specifies the container’s handling of exceptions thrown from a message-driven bean’s
message listener method.

See Handling of Exceptions Thrown by a Message Listener Method of a Message-Driven Bean with
Container-Managed Transaction Demarcation. specifies how the container must handle the exceptions
thrown by a message listener method of a message-driven bean with container-managed transaction
demarcation, including the exceptions thrown by business method interceptor methods which
intercept the invocation of message listener methods. The table specifies the container’s action as a
function of the condition under which the method executes and the exception thrown by the method.

9.3. Container Provider Responsibilities

206 Jakarta Enterprise Beans, Core Features DRAFT

#a10300
#a10301
Ejb.html#a3147
Ejb.html#a3147
Ejb.html#a3164
Ejb.html#a3164

===

Handling of Exceptions Thrown by a Message Listener Method of a Message-Driven Bean with
Container-Managed Transaction Demarcation.

Method condition

Method exception

Container’s action

Bean method runs in the context of a transaction that the container started immediately before
dispatching the method.

This case happens with Required attribute.

AppException

Mark the transaction for rollback if the application exception is specified as causing rollback.

If the instance called setRollbackOnly , rollback the transaction and re-throw AppException to resource
adapter.

Otherwise, attempt to commit the transaction unless the application exception is specified as causing
rollback and re-throw AppException to resource adapter.

system exceptions

Log the exception or error82.

Rollback the container-started transaction.

Discard instance83.

Throw EJBException that wraps the original exception to resource adapter.

Bean method runs with an unspecified transaction context.

This case happens with the NotSupported attribute.

AppException

Re-throw AppException to resource adapter.

system exceptions

Log the exception or error.

9.3. Container Provider Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 207

#a10302
#a10303

Discard instance.

Throw EJBException that wraps the original exception to resource adapter

Table See Handling of Exceptions Thrown by a Message Listener Method of a Message-Driven Bean
with Bean-Managed Transaction Demarcation. specifies how the container must handle the exceptions
thrown by a message listener method of a message-driven bean with bean-managed transaction
demarcation. The table specifies the container’s action as a function of the condition under which the
method executes and the exception thrown by the method.

===

Handling of Exceptions Thrown by a Message Listener Method of a Message-Driven Bean with Bean-
Managed Transaction Demarcation.

Bean method condition

Bean method exception

Container action

Bean is a message-driven bean

AppException

Re-throw AppException to resource adapter.

system exceptions

Log the exception or error.

Rollback a transaction that has been started, but not yet completed, by the instance.

Discard instance.

Throw EJBException that wraps the original exception to resource adapter.

9.3.5. Exceptions from an Enterprise Bean’s Timeout Callback Method

This section specifies the container’s handling of exceptions thrown from an enterprise bean’s timeout
callback method.

See Handling of Exceptions Thrown by a Timeout Callback Method of an Enterprise Bean with
Container-Managed Transaction Demarcation. and See Handling of Exceptions Thrown by a Timeout
Callback Method of an Enterprise Bean with Bean-Managed Transaction Demarcation. specify how the
container must handle the exceptions thrown by the timeout callback method of an enterprise bean.
The timeout callback method does not throw application exceptions and cannot throw exceptions to
the client.

9.3. Container Provider Responsibilities

208 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a3194
Ejb.html#a3194
Ejb.html#a3211
Ejb.html#a3211
Ejb.html#a3223
Ejb.html#a3223

===

Handling of Exceptions Thrown by a Timeout Callback Method of an Enterprise Bean with Container-
Managed Transaction Demarcation.

Method condition

Method exception

Container’s action

Bean timeout callback method runs in the context of a transaction that the container started
immediately before dispatching the method.

system exceptions

Log the exception or error84.

Rollback the container-started transaction.

Discard instance85.

===

Handling of Exceptions Thrown by a Timeout Callback Method of an Enterprise Bean with Bean-
Managed Transaction Demarcation.

Method condition

Method exception

Container’s action

The bean timeout callback method may make use of UserTransaction.

system exceptions

Log the exception or error86.

Rollback a transaction that has been started, but not yet completed, by the instance.

Discard instance87.

9.3.6. Exceptions from Other Container-invoked Callbacks

This subsection specifies the container’s handling of exceptions thrown from the other container-

9.3. Container Provider Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 209

#a10304
#a10305
#a10306
#a10307

invoked callbacks on the enterprise bean. This subsection applies to the following callback methods:

Dependency injection methods.

The PostActivate and PrePassivate callback methods, and/or ejbActivate, ejbPassivate, and
setSessionContext methods of the SessionBean interface.

The setMessageDrivenContext method of the MessageDrivenBean interface.

The afterBegin, beforeCompletion and afterCompletion session synchroniziation methods.

The container must handle all exceptions or errors from these methods as follows:

Log the exception or error to bring the problem to the attention of the System Administrator.

If the instance is in a transaction, mark the transaction for rollback.

Discard the instance (i.e., the container must not invoke any business methods or container callbacks
on the instance).

If the exception or error happened during the processing of a client invoked method, throw the
javax.ejb.EJBException88 . If the EJB 2.1 client view or web service client view is used, throw the
java.rmi.RemoteException to the client if the client is a remote client or throw the
javax.ejb.EJBException to the client if the client is a local client. If the instance executed in the client’s
transaction, the container should throw the javax.ejb.EJBTransactionRolledbackException89 . If the EJB
2.1 client view or web service client view is used, the container should throw the
javax.transaction.TransactionRolledbackException to a remote client or the
javax.ejb.TransactionRolledbackLocalException to a local client, because it provides more information
to the client. (The client knows that it is fruitless to continue the transaction.)

9.3.7. Non-existing Stateful Session Object

If a client makes a call to a stateful session object that has been removed, the container should throw
the javax.ejb.NoSuchEJBException90 . If the EJB 2.1 client view is used, the container should throw the
java.rmi.NoSuchObjectException (which is a subclass of java.rmi.RemoteException) to a remote client,
or the javax.ejb.NoSuchObjectLocalException to a local client.

9.3.8. Exceptions from the Management of Container-Managed Transactions

The container is responsible for starting and committing the container-managed transactions, as
described in Subsection See Container-Managed Transaction Demarcation for Business Methods. This
subsection specifies how the container must deal with the exceptions that may be thrown by the
transaction start and commit operations.

If the container fails to start or commit a container-managed transaction, the container must throw the
javax.ejb.EJBException91 . If the web service client view or EJB 2.1 client view is used, the container
must throw the java.rmi.RemoteException to a remote or web service client and the

9.3. Container Provider Responsibilities

210 Jakarta Enterprise Beans, Core Features DRAFT

#a10308
#a10309
#a10310
Ejb.html#a2755
#a10311

javax.ejb.EJBException to a local client. In the case where the container fails to start or commit a
container-managed transaction on behalf of a message-driven bean or a timeout callback method, the
container must throw and log the javax.ejb.EJBException .

However, the container should not throw the javax.ejb.EJBException or java.rmi.RemoteException if
the container performs a transaction rollback because the transaction has been marked for rollback
and no EJBException or RemoteException would otherwise be thrown according to sections See
Exceptions from a Session Bean’s Business Interface Methods and No-Interface View Methods through
See Non-existing Stateful Session Object. In this case, the container must rollback the transaction and
pass the business method result or the application exception thrown by the business method to the
client.

Note that some implementations of the container may retry a failed transaction transparently to the
client and enterprise bean code. Such a container would throw the javax.ejb.EJBException or __
java.rmi.RemoteException or after a number of unsuccessful tries.

9.3.9. Release of Resources

When the container discards an instance because of a system exception, the container should release
all the resources held by the instance that were acquired through the resource factories declared in the
enterprise bean environment (See Subsection See Resource Manager Connection Factory References).

Note: While the container should release the connections to the resource managers that the instance
acquired through the resource factories declared in the enterprise bean environment, the container
cannot, in general, release “unmanaged” resources that the instance may have acquired through the
JDK APIs. For example, if the instance has opened a TCP/IP connection, most container
implementations will not be able to release the connection. The connection will be eventually released
by the JVM garbage collector mechanism.

9.3.10. Support for Deprecated Use of java.rmi.RemoteException

The EJB 1.0 specification allowed the business methods, ejbCreate, ejbPostCreate, ejbFind<METHOD>,
ejbRemove, and the container-invoked callbacks (i.e., the methods defined in the SessionBean and
SessionSynchronization interfaces) implemented in the enterprise bean class to use the
java.rmi.RemoteException to report non-application exceptions to the container.

This use of the java.rmi.RemoteException was deprecated in EJB 1.1—enterprise beans written for the
EJB 1.1 specification should use the javax.ejb.EJBException instead, and enterprise beans written for
the EJB 2.0 or later specification must use the javax.ejb.EJBException instead.

The EJB 1.1 and EJB 2.0 or later specifications require that a container support the deprecated use of
the java.rmi.RemoteException. The container should treat the java.rmi.RemoteException thrown by an
enterprise bean method in the same way as it is specified for the javax.ejb.EJBException.

9.3. Container Provider Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 211

Ejb.html#a3008
Ejb.html#a3008
Ejb.html#a3246
Ejb.html#a4159

9.4. Client’s View of Exceptions
This section describes the client’s view of exceptions received from an enterprise bean invocation.

A client accesses an enterprise bean either through the enterprise bean’s business interface (whether
local or remote), through the enterprise bean’s no-interface view, through the enterprise bean’s remote
home and remote component interfaces, through the enterprise bean’s local home and local
component interfaces, or through the enterprise bean’s web service client view depending on whether
the client is written to the EJB 3.x API or earlier API and whether the client is a remote client, a local
client, or a web service client.

The methods of the business interface typically do not throw the java.rmi.RemoteException , regardless
of whether the interface is a remote or local interface.

The remote home interface and the remote component interface are Java RMI interfaces, and therefore
the throws clauses of all their methods (including those inherited from superinterfaces) include the
mandatory java.rmi.RemoteException.The throws clauses may include an arbitrary number of
application exceptions.

The local home and local component interfaces are both Java local interfaces, and the throws clauses of
all their methods (including those inherited from superinterfaces) must not include the
java.rmi.RemoteException.The throws clauses may include an arbitrary number of application
exceptions.

The no-interface view is a local view, and the throws clauses of all its methods must not include the
java.rmi.RemoteException. The throws clauses may include an arbitrary number of application
exceptions.

9.4.1. Application Exception

9.4.1.1. Local and Remote Clients

If a client program receives an application exception from an enterprise bean invocation, the client
can continue calling the enterprise bean. An application exception does not result in the removal of the
EJB object.

Although the container does not automatically mark for rollback a transaction because of a thrown
application exception, the transaction might have been marked for rollback by the enterprise bean
instance before it threw the application exception or the application exception may have been
specified to require the container to rollback the transaction. There are two ways to learn if a
particular application exception results in transaction rollback or not:

Statically. Programmers can check the documentation of the enterprise bean’s client view interface.
The Bean Provider may have specified (although he or she is not required to) the application
exceptions for which the enterprise bean marks the transaction for rollback before throwing the
exception.92

9.4. Client’s View of Exceptions

212 Jakarta Enterprise Beans, Core Features DRAFT

#a10312

Dynamically. Clients that are enterprise beans with container-managed transaction demarcation can
use the getRollbackOnly method of the javax.ejb.EJBContext object to learn if the current transaction
has been marked for rollback; other clients may use the getStatus method of the
javax.transaction.UserTransaction interface to obtain the transaction status.

9.4.1.2. Web Service Clients

If a stateless session bean throws an application exception from one of its web service methods, it is
the responsibility of the container to map the exception to the SOAP fault specified in the WSDL that
describes the port type that the stateless session bean implements. For Java clients, the exceptions
received by the client are described by the mapping rules in See Java™ API for XML-based RPC.

9.4.2. java.rmi.RemoteException and javax.ejb.EJBException

As described above, a client receives the javax.ejb.EJBException or the java.rmi.RemoteException as an
indication of a failure to invoke an enterprise bean method or to properly complete its invocation. The
exception can be thrown by the container or by the communication subsystem between the client and
the container.

If the client receives the javax.ejb.EJBException or the java.rmi.RemoteException exception from a
method invocation, the client, in general, does not know if the enterprise bean’s method has been
completed or not.

If the client executes in the context of a transaction, the client’s transaction may, or may not, have been
marked for rollback by the communication subsystem or target bean’s container.

For example, the transaction would be marked for rollback if the underlying transaction service or the
target bean’s container doubted the integrity of the data because the business method may have been
partially completed. Partial completion could happen, for example, when the target bean’s method
returned with a RuntimeException exception, or if the remote server crashed in the middle of
executing the business method.

The transaction may not necessarily be marked for rollback. This might occur, for example, when the
communication subsystem on the client-side has not been able to send the request to the server.

When a client executing in a transaction context receives an EJBException or a RemoteException from
an enterprise bean invocation, the client may use either of the following strategies to deal with the
exception:

Discontinue the transaction. If the client is the transaction originator, it may simply rollback its
transaction. If the client is not the transaction originator, it can mark the transaction for rollback or
perform an action that will cause a rollback. For example, if the client is an enterprise bean, the
enterprise bean may throw a RuntimeException which will cause the container to rollback the
transaction.

Continue the transaction. The client may perform additional operations on the same or other
enterprise beans, and eventually attempt to commit the transaction. If the transaction was marked for

9.4. Client’s View of Exceptions

DRAFT Jakarta Enterprise Beans, Core Features 213

Ejb.html#a9873

rollback at the time the EJBException or RemoteException was thrown to the client, the commit will
fail.

If the client chooses to continue the transaction, the client can first inquire about the transaction status
to avoid fruitless computation on a transaction that has been marked for rollback. A client that is an
enterprise bean with container-managed transaction demarcation can use the
EJBContext.getRollbackOnly method to test if the transaction has been marked for rollback; a client
that is an enterprise bean with bean-managed transaction demarcation, and other client types, can use
the UserTransaction.getStatus method to obtain the status of the transaction.

Some implementations of EJB servers and containers may provide more detailed exception reporting
by throwing an appropriate subclass of the javax.ejb.EJBException or java.rmi.RemoteException to the
client. The following subsections describe the several subclasses of the javax.ejb.EJBException and
java.rmi.RemoteException that may be thrown by the container to give the client more information.

9.4.2.1. javax.ejb.EJBTransactionRolledbackException,
javax.ejb.TransactionRolledbackLocalException, and
javax.transaction.TransactionRolledbackException

The javax.ejb.EJBTransactionRolledbackException and javax.ejb.TransactionRolledbackLocalException
are subclasses of the javax.ejb.EJBException . The javax.transaction.TransactionRolledbackException is
a subclass of the java.rmi.RemoteException. It is defined in the JTA standard extension.

If a client receives one of these exceptions, the client knows for certain that the transaction has been
marked for rollback. It would be fruitless for the client to continue the transaction because the
transaction can never commit.

9.4.2.2. javax.ejb.EJBTransactionRequiredException,
javax.ejb.TransactionRequiredLocalException, and
javax.transaction.TransactionRequiredException

The javax.ejb.EJBTransactionRequiredException and javax.ejb.TransactionRequiredLocalException are
subclasses of the javax.ejb.EJBException . The javax.transaction.TransactionRequiredException is a
subclass of the java.rmi.RemoteException. It is defined in the JTA standard extension.

The javax.ejb.EJBTransactionRequiredException , javax.ejb.TransactionRequiredLocalException , or
javax.transaction.TransactionRequiredException informs the client that the target enterprise bean
must be invoked in a client’s transaction, and that the client invoked the enterprise bean without a
transaction context.

This error usually indicates that the application was not properly formed.

9.4.2.3. javax.ejb.NoSuchEJBException, javax.ejb.NoSuchObjectLocalException, and
java.rmi.NoSuchObjectException

The javax.ejb.NoSuchEJBException is a subclass of the javax.ejb.EJBException. It is thrown to the client
of a session bean’s business interface if a local business method cannot complete because the EJB

9.4. Client’s View of Exceptions

214 Jakarta Enterprise Beans, Core Features DRAFT

object no longer exists.

The javax.ejb.NoSuchObjectLocalException and the java.rmi.NoSuchObjectException apply to the
business methods of the EJB 2.1 local and remote client views respectively.

The javax.ejb.NoSuchObjectLocalException is a subclass of the javax.ejb.EJBException. It is thrown to
the client if a local business method cannot complete because the EJB object no longer exists.

The java.rmi.NoSuchObjectException is a subclass of the java.rmi.RemoteException. It is thrown to the
client if a remote business method cannot complete because the EJB object no longer exists.

9.5. System Administrator’s Responsibilities
The System Administrator is responsible for monitoring the log of the non-application exceptions and
errors logged by the container, and for taking actions to correct the problems that caused these
exceptions and errors.

9.5. System Administrator’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 215

Chapter 10. Support for Distributed
Interoperability
This chapter describes the interoperability support for accessing an enterprise bean through the EJB
2.1 remote client view from clients distributed over a network, and the distributed interoperability
requirements for invocations on enterprise beans from remote clients that are Java Platform,
Enterprise Edition (Java EE) components. Distributed Interoperability is not defined for the EJB 3.x
remote client view.

10.1. Support for Distribution
The remote home and remote component interfaces of an enterprise bean’s remote client view are
defined as Java™ RMI [See Java] interfaces. This allows the container to implement the remote home
and remote component interfaces as distributed objects. A client using the remote home and remote
component interfaces can reside on a different machine than the enterprise bean (location
transparency), and the object references of the remote home and remote component interfaces can be
passed over the network to other applications.

The EJB specification further constrains the Java RMI types that can be used by enterprise beans to be
legal RMI-IIOP types [See IDL To Java™ Language Mapping]. This makes it possible for EJB container
implementors to use RMI-IIOP as the object distribution protocol.

10.1.1. Client-Side Objects in a Distributed Environment

When the RMI-IIOP protocol or similar distribution protocols are used, the remote client
communicates with the enterprise bean using stubs for the server-side objects. The stubs implement
the remote home and remote component interfaces.

===

Location of EJB Client Stubs.

10.1. Support for Distribution

216 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9855
Ejb.html#a9859

The communication stubs used on the client side are artifacts generated at the enterprise bean’s
deployment time by the Container Provider’s tools. The stubs used on the client are specific to the wire
protocol used for the remote invocation.

10.2. Interoperability Overview
Session beans and entity93 beans that are deployed in one vendor’s server product may need to be
accessed from Java EE client components that are deployed in another vendor’s product through the
remote client view. EJB defines a standard interoperability protocol based on CORBA/IIOP to address
this need.

The interoperability protocols described here must be supported by compatible EJB products.
Additional vendor-specific protocols may also be supported.

See Heterogeneous EJB Environment shows a heterogeneous environment that includes systems from
several vendors to illustrate the interoperability enabled by EJB.

===

Heterogeneous EJB Environment

The following sections in this chapter

describe the goals for EJB invocation interoperability

provide illustrative scenarios

describe the interoperability requirements for remote invocations, transactions, naming, and security.

10.2. Interoperability Overview

DRAFT Jakarta Enterprise Beans, Core Features 217

#a10312
Ejb.html#a3322

10.2.1. Interoperability Goals

 The goals of the
interoperability _requirements specified in
this chapter are as follows:_

To allow clients in one application deployed in Java EE containers from one Server Provider to access
services from session and entitySee Component contract and client view of entity beans are described
in the EJB Optional Features document [40.] beans in another application that is deployed in an EJB
container from a different Server Provider. For example, web components (JavaServer Pages and
servlets) that are deployed on a Java EE compliant web server provided by one Server Provider must
be able to invoke the business methods of enterprise beans that are deployed on a Java EE compliant
EJB server from another Server Provider.

To achieve interoperability without any new requirements on the Java EE application developer.

To ensure out-of-the-box interoperability between compliant Java EE products. It must be possible for
an enterprise customer to install multiple Java EE server products from different Server Providers (on
potentially different operating systems), deploy applications in the Java EE servers, and have the
multiple applications interoperate.

To leverage the interoperability work done by standards bodies (including the IETF, W3C, and OMG)
where possible, so that customers can work with industry standards and use standard protocols to
access enterprise beans.

This specification does not address interoperability issues between enterprise beans and non-Java-EE
components. The Java EE platform specification See Java™ Platform and JAX-WS specification See
Java™ API for describe requirements for interoperability with Internet clients (using HTTP and XML)
and interoperability with enterprise information systems (using the Connector architecture See Java
EE™).

Since the interoperability protocol described here is based on CORBA/IIOP, CORBA clients written in
Java, C++, or other languages can also invoke methods on enterprise beans.

This chapter subsumes the previous EJB1.1-to-CORBA mapping document See Enterprise JavaBeans™
to CORBA Mapping v1.1.http://www.oracle.com/technetwork/java/javaee/ejb/index.html..

10.3. Interoperability Scenarios
This section presents a number of interoperability scenarios that motivate the interoperability
mechanisms described in later sections of this chapter. These scenarios are illustrative rather than
prescriptive. This section does not specify requirements for a Java EE product to support these
scenarios in exactly the manner described here.

Java EE applications are multi-tier, web-enabled applications. Each application consists of one or more

10.3. Interoperability Scenarios

218 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a10313
Ejb.html#a10313
Ejb.html#a9861
Ejb.html#a9881
Ejb.html#a9881
Ejb.html#a9863
Ejb.html#a9863
Ejb.html#a9864
Ejb.html#a9864

components, which are deployed in containers. The four types of containers are:

EJB containers, which host enterprise beans.

Web containers, which host JavaServer Pages (JSPs) and servlet components as well as static
documents, including HTML pages.

Application client containers, which host standalone applications.

Applet containers, which host applets which may be downloaded from a web site. At this time, there is
no requirement for an applet to be able to directly invoke the remote methods of enterprise beans.

The scenarios below describe interactions between components hosted in these various container
types.

10.3.1. Interactions Between Web Containers and EJB Containers for E-
Commerce Applications

This scenario occurs for business-to-business and business-to-consumer interactions over the Internet.

 _Scenario 1: A customer wants to buy a book
from an Internet bookstore. The bookstore’s web site consists of a Java
EE application containing JSPs that form the presentation layer, and
another Java EE application containing enterprise beans that have the
business logic and database access code. The JSPs and enterprise beans
are deployed in containers from different vendors._

 _At deployment time: The enterprise beans
are deployed, and their EJBHome objects are published in the EJB
server’s name service. The Deployer links the EJB reference in the JSP’s
deployment descriptor to the URL of the enterprise bean’s EJBHome
object, which can be looked up from the name service. The transaction
attribute specified in the enterprise bean’s deployment descriptor is
RequiresNew for all business methods. Because the “checkout” JSP
requires secure access to set up payments for purchases, the bookstore’s
administrator configures the “checkout” JSP to require access over HTTPS
with only server authentication. Customer authentication is done using
form-based login. The “book search” JSP is accessed over normal HTTP.
Both JSPs talk with enterprise beans that access the book database. The
web and EJB containers use the same customer realm and have a trust
relationship with each other. The network between the web and EJB
servers is not guaranteed to be secure from attacks._

10.3. Interoperability Scenarios

DRAFT Jakarta Enterprise Beans, Core Features 219

 _At runtime: The customer accesses the book
search JSP using a browser. The JSP looks up the enterprise bean’s
EJBHome object in a name service, and calls findBooks(...) with the
search criteria as parameters. The web container establishes a secure
session with the EJB container with mutual authentication between the
containers, and invokes the enterprise bean. The customer then decides
to buy a book, and accesses the “checkout” JSP. The customer enters the
necessary information in the login form, which is used by the web server
to authenticate the customer. The JSP invokes the enterprise bean to
update the book and customer databases. The customer’s principal is
propagated to the EJB container and used for authorization checks. The
enterprise bean completes the updates and commits the transaction. The
JSP sends back a confirmation page to the customer._

10.3.2. Interactions Between Application Client Containers and EJB Containers
Within an Enterprise’s Intranet

 _Scenario 2.1: An enterprise has an expense
accounting application used by employees from their desktops. The
server-side consists of a Java EE application containing enterprise
beans that are deployed on one vendor's Java EE product, which is hosted
in a datacenter. The client side consists of another Java EE application
containing an application client deployed using another vendor's Java EE
infrastructure. The network between the application client and the EJB
container is insecure and needs to be protected against spoofing and
other attacks._

 _At deployment time: The enterprise beans
are deployed and their EJBHome objects are published in the enterprise’s
name service. The application clients are configured with the names of
the EJBHome objects. The Deployer maps employees to roles that are
allowed access to the enterprise beans. The System Administrator
configures the security settings of the application client and EJB
container to use client and server authentication and message
protection. The System Administrator also does the necessary client-side
configuration to allow client authentication._

10.3. Interoperability Scenarios

220 Jakarta Enterprise Beans, Core Features DRAFT

 _At runtime: The employee logs on using
username and password. The application client container may interact
with the enterprise’s authentication service infrastructure to set up
the employee’s credentials. The client application does a remote
invocation to the name server to look up the enterprise bean’s EJBHome
object, and creates the enterprise beans. The application client
container uses a secure transport protocol to interact with the name
server and EJB server, which does mutual authentication and also
guarantees the confidentiality and integrity of messages. The employee
then enters the expense information and submits it. This causes remote
business methods of the enterprise beans to be invoked. The EJB
container performs authorization checks and, if they succeed, executes
the business methods._

 _Scenario 2.2: This is the same as Scenario
2.1, except that there is no client-side authentication infrastructure
set up by the System Administrator which can authenticate at the
transport protocol layer. At runtime the client container needs to send
the user’s password to the server during the method invocation to
authenticate the employee._

10.3.3. Interactions Between Two EJB Containers in an Enterprise’s Intranet

 _Scenario 3: An enterprise has an expense
accounting application which needs to communicate with a payroll
application. The applications use enterprise beans and are deployed on
Java EE servers from different vendors. The Java EE servers and
naming/authentication services may be in the enterprise's datacenter
with a physically secure private network between them, or they may need
to communicate across the intranet, which may be less secure. The
applications need to update accounts and payroll databases. The employee
(client) accesses the expense accounting application as described in
Scenario 2._

10.3. Interoperability Scenarios

DRAFT Jakarta Enterprise Beans, Core Features 221

 _At deployment time: The Deployer configures
both applications with the appropriate database resources. The accounts
application is configured with the name of the EJBHome object of the
payroll application. The payroll bean’s deployment descriptor specifies
the RequiresNew transaction attribute for all methods. The applications
use the same principal-to-role mappings (e.g. the roles may be Employee,
PayrollDept, AccountsDept). The Deployer of these two applications has
administratively set up a trust relationship between the two EJB
containers, so that the containers do not need to authenticate
principals propagated on calls to enterprise beans from the other
container. The System Administrator also sets up the message protection
parameters of the two containers if the network is not physically
secure._

 _At runtime: An employee makes a request to
the accounts application which requires it to access the payroll
application. The accounts application does a lookup of the payroll
application’s EJBHome object in the naming/directory service and creates
enterprise beans. It updates the accounts database and invokes a remote
method of the payroll bean. The accounts bean’s container propagates the
employee’s principal on the method call. The payroll bean’s container
maps the propagated employee principal to a role, does authorization
checks, and sets up the payroll bean’s transaction context. The
container starts a new transaction, then the payroll bean updates the
payroll database, and the container commits the transaction. The
accounts bean receives a status reply from the payroll bean. If an error
occurs in the payroll bean, the accounts bean executes code to recover
from the error and restore the databases to a consistent state._

10.3.4. Intranet Application Interactions Between Web Containers and EJB
Containers

 _Scenario 4: This is the same as scenario
2.1, except that instead of using a “fat-client” desktop application to
access the enterprise’s expense accounting application, employees use a
web browser and connect to a web server in the intranet that hosts JSPs.
The JSPs gather input from the user (e.g., through an HTML form), invoke
enterprise beans that contain the actual business logic, and format the
results returned by the enterprise beans (using HTML)._

10.3. Interoperability Scenarios

222 Jakarta Enterprise Beans, Core Features DRAFT

 _At deployment time: The enterprise Deployer
configures its expense accounting JSPs to require access over HTTPS with
mutual authentication. The web and EJB containers use the same customer
realm and have a trust relationship with each other._

 _At run-time:
The employee logs in to the client desktop, starts the browser, and
accesses the expense accounting JSP. The browser establishes an HTTPS
session with the web server. Client authentication is performed (for
example) using the employee’s credentials which have been established by
the operating system at login time (the browser interacts with the
operating system to obtain the employee’s credentials). The JSP looks up
the enterprise bean’s EJBHome object in a name service. The web
container establishes a secure session with the EJB container with
mutual authentication and integrity/confidentiality protection between
the containers, and invokes methods on the enterprise beans._

10.4. Overview of Interoperability Requirements
The interoperability requirements used to support the above scenarios are:

 Remote method invocation on an enterprise
bean’s EJBObject and EJBHome object references (scenarios 1,2,3,4),
described in section link:Ejb.html#a3376[See Remote Invocation
Interoperability].

 Name service lookup of the enterprise bean’s
EJBHome object (scenarios 1,2,3,4), described in section
link:Ejb.html#a3504[See Naming Interoperability].

Integrity and confidentiality protection of messages (scenarios 1,2,3,4), described in section See
Security Interoperability.

Authentication between an application client and EJB container (described in section See Security
Interoperability):

Mutual authentication at the transport protocol layer when there is client-side authentication
infrastructure such as certificates (scenario 2.1).

Transfer of the user’s authentication data from application client to EJB container to allow the EJB
container to authenticate the client when there is no client-side authentication infrastructure (scenario
2.2).

10.4. Overview of Interoperability Requirements

DRAFT Jakarta Enterprise Beans, Core Features 223

Ejb.html#a3517
Ejb.html#a3517
Ejb.html#a3517
Ejb.html#a3517

 Mutual authentication between two EJB
containers or between a web and EJB container to establish trust before
principals are propagated (scenarios 1,3,4), described in section
link:Ejb.html#a3517[See Security Interoperability].

 Propagation of the Internet or intranet
user’s principal name for invocations on enterprise beans from web or
EJB containers when the client and server containers have a trust
relationship (scenarios 1,3,4), described in section
link:Ejb.html#a3517[See Security Interoperability].

EJB, web, and application client containers must support the above requirements separately as well as
in combinations.

10.5. Remote Invocation Interoperability
This section describes the interoperability mechanisms that enable remote invocations on EJBObject
and EJBHome object references when client containers and EJB containers are provided by different
vendors. This is needed to satisfy interoperability requirement (1) in section See Overview of
Interoperability Requirements.

All EJB, web, and application client containers must support the IIOP 1.2 protocol for remote
invocations on EJBObject and EJBHome references. EJB containers must be capable of servicing IIOP
1.2 based invocations on EJBObject and EJBHome objects. IIOP 1.2 is part of the CORBA 2.3.1
specification See CORBA 2.3.1 Specification. from the OMG94. Containers may additionally support
vendor-specific protocols.

CORBA Interoperable Object References (IORs) for EJBObject and EJBHome object references must
include the GIOP version number 1.2. The IIOP infrastructure in all Java EE containers must be able to
accept fragmented GIOP messages, although sending fragmented messages is optional. Bidirectional
GIOP messages may optionally be supported by Java EE clients and servers: if a Java EE server receives
an IIOP message from a client which contains the BiDirIIOPServiceContext structure, it may or may not
use the same connection for sending requests back to the client.

Since Java applications use Unicode characters by default, Java EE containers are required to support
the Unicode UTF16 code set for transmission of character and string data (in the IDL wchar and wstring
datatypes). Java EE containers may optionally support additional code sets. EJBObject and EJBHome
IORs must have the TAG_CODE_SETS tagged component which declares the codesets supported by the
EJB container. IIOP messages which include wchar and wstring datatypes must have the code sets
service context field. The CORBA 2.3.1 requirements for code set support must be followed by Java EE
containers.

EJB containers are required to translate Java types to their on-the-wire representation in IIOP

10.5. Remote Invocation Interoperability

224 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a3364
Ejb.html#a3364
Ejb.html#a9865
#a10314

messages using the Java Language to IDL mapping specification See IDL To Java™ Language Mapping
with the wire formats for IDL types as described in the GIOP specification in CORBA 2.3. The following
subsections describe the mapping details for Java types.

10.5.1. Mapping Java Remote Interfaces to IDL

The Java Language to IDL Mapping specification See IDL To Java™ Language describes precisely how
the remote home and remote component interfaces of a session bean or an entity bean95 are mapped
to IDL. This mapping to IDL is typically implicit when Java RMI over IIOP is used to invoke enterprise
beans. Java EE clients use only the Java RMI APIs to invoke enterprise beans. The client container may
use the CORBA portable Stub APIs for the client-side stubs. EJB containers may create CORBA Tie
objects for each EJBObject or EJBHome object.

10.5.2. Mapping Value Objects to IDL

The Java interfaces that are passed by value during remote invocations on enterprise beans are
javax.ejb.Handle , javax.ejb.HomeHandle , and javax.ejb.EJBMetaData . There may also be application-
specific value types that are passed as parameters or return values on enterprise bean invocations. In
addition, several Java exception classes that are thrown by remote methods also result in concrete IDL
value types. All these value types are mapped to IDL abstract value types or abstract interfaces using
the rules in the Java Language to IDL Mapping.

10.5.3. Mapping of System Exceptions

Java system exceptions, including the java.rmi.RemoteException and its subclasses, may be thrown by
the EJB container. If the client’s invocation was made over IIOP, the EJB server is required to map these
exceptions to CORBA system exceptions and send them in the IIOP reply message to the client, as
specified in the following table

System exception thrown by EJB container CORBA system exception received by client
ORB

javax.transaction.TransactionRolledbackExceptio
n

TRANSACTION_ROLLEDBACK

javax.transaction.TransactionRequiredException TRANSACTION_REQUIRED

javax.transaction.InvalidTransactionException INVALID_TRANSACTION

java.rmi.NoSuchObjectException OBJECT_NOT_EXIST

java.rmi.AccessException NO_PERMISSION

java.rmi.MarshalException MARSHAL

java.rmi.RemoteException UNKNOWN

For EJB clients, the ORB’s unmarshaling machinery maps CORBA system exceptions received in the
IIOP reply message to the appropriate Java exception as specified in the Java Language to IDL

10.5. Remote Invocation Interoperability

DRAFT Jakarta Enterprise Beans, Core Features 225

Ejb.html#a9859
Ejb.html#a9859
#a10315

mapping. This results in the original Java exception being received by the client Java EE component.

10.5.4. Obtaining Stub and Client View Classes

When a Java EE component (application client, JSP, servlet or enterprise bean) receives a reference to
an EJBObject or EJBHome object through JNDI lookup or as a parameter or return value of an
invocation on an enterprise bean, an instance of an RMI-IIOP stub class (proxy) for the enterprise
bean’s remote home or remote RMI interface needs to be created. When a component receives a value
object as a parameter or return value of an enterprise bean invocation, an instance of the value class
needs to be created. The stub class, value class, and other client view classes must be available to the
referencing container (the container hosting the component that receives the reference or value type).

The client view classes, including application value classes, must be packaged with the referencing
component’s application, as described in See Packaging Requirements.

Stubs for invoking on EJBHome and EJBObject references must be provided by the referencing
container, for example, by generating stub classes at deployment time for the EJBHome and EJBObject
interfaces of the referenced beans that are packaged with the referencing component’s application.
Stub classes may or may not follow the standard RMI-IIOP portable stub architecture.

Containers may optionally support run-time downloading of stub and value classes needed by the
referencing container. The CORBA 2.3.1 specification and the Java Language to IDL Mapping specify
how stub and value type implementations are to be downloaded: using codebase URLs that are either
embedded in the EJBObject or EJBHome’s IOR, or sent in the IIOP message service context, or
marshalled with the value type. The URLs for downloading may optionally include an HTTPS URL for
secure downloading.

10.5.5. System Value Classes

System value classes are serializable value classes implementing the javax.ejb.Handle,
javax.ejb.HomeHandle, javax.ejb.EJBMetaData, java.util.Enumeration, java.util.Collection, and
java.util.Iterator interfaces. These value classes are provided by the EJB container vendor. They must
be provided in the form of a JAR file by the container hosting the referenced bean. For interoperability
scenarios, if a referencing component would use such system value classes at runtime, the Deployer
must ensure that these system value classes provided by the container hosting the referenced bean are
available to the referencing component. This may be done, for example, by including these system
value classes in the classpath of the referencing container, or by deploying the system value classes
with the referencing component’s application by providing them to the deployment tool.

Implementations of these system value classes must be portable (they must use only J2SE and Java EE
APIs) so that they can be instantiated in another vendor’s container. If the system value class
implementation needs to load application-specific classes (such as remote home or remote component
interfaces) at runtime, it must use the thread context class loader. The referencing container must
make application-specific classes available to the system value class instance at runtime through the
thread context class loader.

10.5. Remote Invocation Interoperability

226 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9306

10.5.5.1. HandleDelegate SPI

The javax.ejb.spi.HandleDelegate service provider interface defines methods that enable portable
implementations of Handle and HomeHandle that are instantiated in a different vendor’s container to
serialize and deserialize EJBObject and EJBHome references. The HandleDelegate interface is not used
by enterprise beans or Java EE application components directly.

EJB, web and application client containers must provide implementations of the HandleDelegate
interface. The HandleDelegate object must be accessible in the client Java EE component’s JNDI
namespace at the reserved name “ java:comp/HandleDelegate ”. The HandleDelegate object is not
exported outside the container that provides it.

Portable implementations of Handle and HomeHandle must look up the HandleDelegate object of the
container in which they are instantiated using JNDI at the name “ java:comp/HandleDelegate ” and use
the HandleDelegate object to serialize and deserialize EJBObject and EJBHome references as follows:

Handle and HomeHandle implementation classes must define writeObject and readObject methods to
control their serialization and deserialization. These methods must not wrap or substitute the stream
objects that are passed to the HandleDelegate methods.

The writeObject method of Handle implementations must call HandleDelegate.writeEJBObject with the
Handle’s EJBObject reference and the serialization output stream object as parameters. The
HandleDelegate implementation (which is provided by the client container in which the Handle was
instantiated, potentially from a different vendor) then writes the EJBObject to the output stream. If the
output stream corresponds to an IIOP message, the HandleDelegate must use the standard IIOP
abstract interface format for writing the EJBObject reference.

The readObject method of Handle implementations must call HandleDelegate.readEJBObject with the
serialization input stream object as parameter, and with the stream positioned at the location where
the EJBObject can be read. The HandleDelegate implementation then reads the EJBObject from the
input stream and returns it to the Handle. If the input stream corresponds to an IIOP message, the
HandleDelegate must use the standard abstract interface format for reading the EJBObject reference.
The HandleDelegate must ensure that the EJBObject reference is capable of performing invocations
immediately after deserialization. The Handle maintains a reference to the EJBObject as a transient
instance variable and returns it when the Java EE component calls Handle.getEJBObject.

The writeObject and readObject methods of HomeHandle implementation classes must be
implemented similarly, by using HandleDelegate.writeEJBHome and HandleDelegate.readEJBHome
respectively.

10.6. Transaction Interoperability

10.6. Transaction Interoperability

DRAFT Jakarta Enterprise Beans, Core Features 227

 _Transaction interoperability between
containers provided by different vendors is an optional feature in this
version of the EJB specification. Vendors may choose to not implement
transaction interoperability. However, vendors who choose to implement
transaction interoperability must follow the requirements in sections
link:Ejb.html#a3429[See Transaction Interoperability
Requirements] and link:Ejb.html#a3452[See Interoperating with
Containers that do not Implement Transaction Interoperability], and
vendors who choose not to_ implement
transaction interoperability _must follow the requirements in section
link:Ejb.html#a3452[See Interoperating with Containers that do
not Implement Transaction Interoperability]._

10.6.1. Transaction Interoperability Requirements

 _A distributed transaction started by a web
or EJB container must be able to propagate in a remote invocation to an
enterprise bean in an EJB container provided by a different vendor, and
the containers must participate in the distributed two-phase commit
protocol._

10.6.1.1. Transaction Context Wire Format

 _Transaction context propagation from client
to EJB container uses the implicit propagation mechanism described in
the_ CORBA Object Transaction Service (OTS)
v1.2 specification link:Ejb.html#a9860[See Transaction Service
Specification (OTS). http://www.omg.org/cgi-bin/doc?ptc/2001-11-03.].

 _The transaction context format in IIOP
messages is specified in the_ _CosTransactions::PropagationContext_
_structure described in the OTS specification. EJB containers that
support transaction interoperability are required to be capable of
producing and consuming transaction contexts in IIOP messages in the
format described in the OTS specification. Web containers_ that support
transaction interoperability _are required to include client-side
libraries which can produce the OTS transaction context for sending over
IIOP._

Note that it is not necessary for containers to include the Java mappings of the OTS APIs. A container
may implement the requirements in the OTS specification in any manner, for example using a non-
Java OTS implementation, or an on-the-wire bridge between an existing transaction manager and the

10.6. Transaction Interoperability

228 Jakarta Enterprise Beans, Core Features DRAFT

OTS protocol, or an OTS wrapper around an existing transaction manager.

 The _CosTransactions::PropagationContext_
_structure must be included in IIOP messages sent by web or EJB
containers when required by the rules described in the OTS 1.2
specification. The target EJB container must process IIOP invocations
based on the transaction policies of EJBObject or EJBHome references
using the rules described in the_ OTS 1.2 specification
link:Ejb.html#a9860[See Transaction Service Specification (OTS).
http://www.omg.org/cgi-bin/doc?ptc/2001-11-03.].

10.6.1.2. Two-Phase Commit Protocol

The object interaction diagram in See Transaction Context Propagation illustrates the interactions
between the client and server transaction managers for transaction context propagation, resource and
synchronization object registration, and two-phase commit. This diagram is an example of the
interactions between the various entities; it is not intended to be prescriptive.

===

Transaction Context Propagation

10.6. Transaction Interoperability

DRAFT Jakarta Enterprise Beans, Core Features 229

Ejb.html#a3440

 _Containers that perform transactional work
within the scope of a transaction must register an OTS Resource object
with the transaction coordinator whose object reference is included in
the propagated transaction context (step 3), and may also register an
OTS Synchronization object (step 2). If the server container does not
register an OTS Synchronization object, it must still ensure that the
beforeCompletion method of session beans and ejbStore method of entity
beanslink:#a10316[96] are called with the proper transaction
context. Containers must participate in the two-phase commit and
recovery procedures performed by the transaction coordinator /
terminator (steps 6,7), as described by the OTS specification._

Compliant Java EE containers must not use nested transactions in interoperability scenarios.

10.6.1.3. Transactional Policies of Enterprise Bean References

The OTS1.2 specification describes the CosTransactions::OTSPolicy and
CosTransactions::InvocationPolicy structures that are encoded in IORs as tagged components.
EJBObject and EJBHome references must contain these tagged components97 with policy values as
described below.

The transaction attributes of enterprise beans can be specified per method, while in OTS the entire
CORBA object has the same OTS transaction policy. The rules below ensure that the transaction context
will be propagated if any method of an enterprise bean needs to execute in the client’s transaction
context. However, in some cases there may be extra performance overhead of propagating the client’s
transaction context even if it will not be used by the enterprise bean method.

EJBObject and EJBHome references may have the InvocationPolicy value as either
CosTransactions::SHARED or CosTransactions::EITHER 98.

All EJBObject and EJBHome references must have the OTSPolicy value as CosTransactions::ADAPTS .
This is necessary to allow clients to invoke methods of the javax.ejb.EJBObject and javax.ejb.EJBHome
with or without a transaction.

The CosTransactions::Synchronization object registered by the EJB container with the transaction
coordinator should have the OTSPolicy value CosTransactions::ADAPTS and InvocationPolicy value
CosTransactions::SHARED to allow enterprise beans to do transactional work during the
beforeCompletion notification from the transaction coordinator.

10.6.1.4. Exception Handling Behavior

10.6. Transaction Interoperability

230 Jakarta Enterprise Beans, Core Features DRAFT

#a10317
#a10318

 _The exception handling behavior described
in the OTS1.2 specification must be followed. In particular, if an
application exception (an exception which is not a CORBA system
exception and does not extend_
java.rmi.RemoteException _) is returned by the server, the request is
defined as being successful; hence the client-side OTS library must not
roll back the transaction. This allows application exceptions to be
propagated back to the client without rolling back the transaction, as
required by the exception handling rules in
link:Ejb.html#a2940[See Exception Handling]._

10.6.2. Interoperating with Containers that do not Implement Transaction
Interoperability

The requirements in this subsection are designed to ensure that when a Java EE container does not
support transaction interoperability, the failure modes are well defined so that the integrity of an
application’s data is not compromised: at worst the transaction is rolled back. When a Java EE client
component expects the client’s transaction to propagate to the enterprise bean but the client or EJB
container cannot satisfy this expectation, a java.rmi.RemoteException or subclass is thrown, which
ensures that the client’s transaction will roll back.

In addition, the requirements below allow a container that does not support transaction propagation
to interoperate with a container that does support transaction propagation in the cases where the
enterprise bean method’s transaction attribute indicates that the method would not be executed in the
client’s transaction.

10.6.2.1. Client Container Requirements

If the client in another container invokes an enterprise bean’s method when there is no active global
transaction associated with the client’s thread, the client container does not include a transaction
context in the IIOP request message to the EJB server, i.e., there is no
CosTransactions::PropagationContext structure in the IIOP request header.

The client application component expects a global transaction to be propagated to the server only if the
client’s thread has an active global transaction. In this scenario, if the client container does not support
transaction interoperability, it has two options:

If the client container does not support transaction propagation or uses a non-OTS protocol, it must
include the OTS CosTransactions::PropagationContext structure in the IIOP request to the server (step 1
in the object interaction diagram above), with the CosTransactions::Coordinator and
CosTransactions::Terminator object references as null. The remaining fields in this “null transaction
context,” such as the transaction identifier, are not interpreted and may have any value. The “null
transaction context” indicates that there is a global client transaction active but the client container is
not capable of propagating it to the server. The presence of this “null transaction context” allows the
EJB container to determine whether the Java EE client component expects the client’s global

10.6. Transaction Interoperability

DRAFT Jakarta Enterprise Beans, Core Features 231

transaction to propagate to the server.

Client containers that use the OTS transaction context format but still do not support transaction
interoperability with other vendor’s containers must reject the Coordinator::register_resource call (step
3 in the object interaction diagram above) by throwing a CORBA system exception if the server’s
Resource object reference indicates that it belongs to another vendor’s container.

10.6.2.2. EJB container requirements

All EJB containers (including those that do not support transaction propagation) must include the
CosTransactions::OTSPolicy and optionally the CosTransactions::InvocationPolicy tagged component in
the IOR for EJBObject and EJBHome references as described in section See Transactional Policies of
Enterprise Bean References.

Requirements for EJB Containers Supporting Transaction Interoperability

When an EJB container that supports transaction propagation receives the IIOP request message, it
must behave as follows:

If there is no OTS transaction context in the IIOP message, the container must follow the behavior
described in See Container Provider Responsibilities.

If there is a valid, complete OTS transaction context in the IIOP message, the container must follow the
behavior described in See Container Provider Responsibilities.

If there is a null transaction context (as defined in section See Client Container Requirements above) in
the IIOP message, the container’s required behavior is described in the table below. The entry “throw
RemoteException” indicates that the EJB container must throw the java.rmi.RemoteException to the
client after the “received request” interaction with the server’s transaction manager (after step 1 in the
object interaction diagram above).

EJB method’s Transaction Attribute EJB container behavior on receiving null OTS
transaction context

Mandatory throw RemoteException

Required throw RemoteException

RequiresNew follow See Container Provider Responsibilities

Supports throw RemoteException

NotSupported follow See Container Provider Responsibilities

Never follow See Container Provider Responsibilities

Bean Managed follow See Container Provider Responsibilities

10.6. Transaction Interoperability

232 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a3443
Ejb.html#a3443
Ejb.html#a2695
Ejb.html#a2695
Ejb.html#a3455
Ejb.html#a2695
Ejb.html#a2695
Ejb.html#a2695
Ejb.html#a2695

10.7. Requirements for EJB Containers not Supporting
Transaction Interoperability
When an EJB container that does not support transaction interoperability receives the IIOP request
message, it must behave as follows:

If there is no OTS transaction context in the IIOP message, the container must follow the behavior
described in See Container Provider Responsibilities.

If there is a valid, complete OTS transaction context in the IIOP message, the container’s required
behavior is described in the table below.

If there is a null transaction context (as defined in section See Client Container Requirements) in the
IIOP message, the container’s required behavior is described in the table below. Note that the
container may not know whether the received transaction context in the IIOP message is valid or null.

EJB method’s Transaction Attribute EJB container behavior on receiving null or
valid OTS transaction context

Mandatory throw RemoteException

Required throw RemoteException

RequiresNew follow See Container Provider Responsibilities

Supports throw RemoteException

NotSupported follow See Container Provider Responsibilities

Never follow See Container Provider Responsibilities

Bean Managed follow See Container Provider Responsibilities

EJB containers that accept the OTS transaction context format but still do not support interoperability
with other vendors’ client containers must follow the column in the table above for “null or valid OTS
transaction context” if the transaction identity or the Coordinator object reference in the propagated
client transaction context indicate that the client belongs to a different vendor’s container.

10.8. Naming Interoperability

 _This section describes the requirements for
supporting interoperable access to naming services for looking up
EJBHome object references_ (interoperability
requirement two in section link:Ejb.html#a3364[See Overview of
Interoperability Requirements]) _._

10.7. Requirements for EJB Containers not Supporting Transaction Interoperability

DRAFT Jakarta Enterprise Beans, Core Features 233

Ejb.html#a2695
Ejb.html#a3455
Ejb.html#a2695
Ejb.html#a2695
Ejb.html#a2695
Ejb.html#a2695

 _EJB containers are required to be able to
publish EJBHome object references in a CORBA CosNaming service
link:Ejb.html#a9866[See CORBA Naming Service.
http://www.omg.org/spec/NAM/.]. The CosNaming service must implement the
IDL interfaces in the CosNaming module defined in
link:Ejb.html#a9866[See CORBA Naming Service.
http://www.omg.org/spec/NAM/.] and allow clients to invoke the_
 resolve _and_ _list_ _operations over
IIOP._

 _The CosNaming service must follow the
requirements in the CORBA Interoperable Name Service specification
link:Ejb.html#a9867[See Interoperable Name Service FTF document.
http://www.omg.org/cgi-bin/doc?ptc/00-08-07.] for providing the host,
port, and object key for its root_ _NamingContext_ _object. The
CosNaming service must be able to service IIOP invocations on the root_
NamingContext _at the advertised host, port, and object key._

 Client containers (i.e., EJB, web, or
application client containers) _are required to include a JNDI CosNaming
service provider that uses the mechanisms defined in the_ Interoperable
Name Service specification _to contact the server’s CosNaming service,
and to resolve the EJBHome object using standard CosNaming APIs. The
JNDI CosNaming service provider may or may not use the JNDI SPI
architecture. The JNDI CosNaming service provider must access the_ root
NamingContext _of the server’s CosNaming service by creating an object
reference from the URL_ _corbaloc:iiop:1.2@<host>:<port>/<objectkey>_
(where _<host>_ _,_ _<port>_ , and _<objectkey>_ _are the values
corresponding to the root NamingContext advertised by the server’s
CosNaming service), or by using an equivalent mechanism._

At deployment time, the Deployer of the client container should obtain the host, port and object key of
the server’s CosNaming service and the CosNaming name of the server EJBHome object (e.g. by
browsing the server’s namespace) for each such EJB annotation or ejb-ref element in the client
component’s deployment descriptor. The ejb-ref-name (which is used by the client code in the JNDI
lookup call) should then be linked to the EJBHome object’s CosNaming name. At run-time, the client
component’s JNDI lookup call uses the CosNaming service provider, which contacts the server’s
CosNaming service, resolves the CosNaming name, and returns the EJBHome object reference to the
client component.

Since the EJBHome object’s name is scoped within the namespace of the CosNaming service that is
accessible at the provided host and port, it is not necessary to federate the namespaces of the client
and server containers.

10.8. Naming Interoperability

234 Jakarta Enterprise Beans, Core Features DRAFT

 _The advantage of using CosNaming is better
integration with the IIOP infrastructure that is already required for
interoperability, as well as interoperability with non-Java-EE CORBA
clients and servers. Since CosNaming stores only CORBA objects it is
likely that vendors will use other enterprise directory services for
storing other resources._

 _Security of CosNaming service access is
achieved using the security interoperability protocol described in
link:Ejb.html#a3517[See Security Interoperability]. The
CosNaming service must support this protocol. Clients which construct
the root NamingContext object reference from a URL should send an IIOP_
 LocateRequest _message to the CosNaming
service to obtain the complete IOR (with SSL information) of the root
NamingContext, and then initiate an SSL session with the CosNaming
service, as determined by the client policy._

10.9. Security Interoperability
This section describes the interoperable mechanisms that support secure invocations on enterprise
beans in intranets. These mechanisms are based on the CORBA/IIOP protocol.

 _EJB containers are required to follow the
protocol rules prescribed by the CSIv2 specification_ Conformance Level
0 _._

10.9.1. Introduction

The goal of the secure invocation mechanisms is to support the interoperability requirements
described earlier in this chapter, as well as be capable of supporting security technologies that are
expected to be widely deployed in enterprises, including Kerberos-based secret key mechanisms and
X.509 certificate-based public key mechanisms.

The authentication identity (i.e. principal) associated with a Java EE component is usually that of the
user on whose behalf the component is executing99. The principal under which an enterprise bean
invocation is performed is either that of the bean’s caller or the run-as principal which was configured
by the Deployer. When there is a chain of invocations across a web component and enterprise beans,
an intermediate component may use the principal of the caller (the initiating client) or the
intermediate component may use its run-as principal to perform an invocation on the callee,
depending on the security identity specified for the intermediate component in its deployment
descriptor.

10.9. Security Interoperability

DRAFT Jakarta Enterprise Beans, Core Features 235

#a10319

The security principal associated with a container depends on the type of container. Application client
containers usually do not have a separate principal associated with them (they operate under the
user’s principal). Web and EJB containers are typically associated with a security principal of their own
(e.g., the operating system user for the container’s process) which may be configured by the System
Administrator at deployment time. When the client is a web or EJB container, the difference between
the client component’s principal and the client container’s principal is significant for interoperability
considerations.

10.9.1.1. Trust Relationships Between Containers, Principal Propagation

When there is a chain of multiple invocations across web components and enterprise beans,
intermediate components may not have access to the authentication data of the initiating client to
provide proof of the client’s identity to the target. In such cases, the target’s authentication
requirements can be satisfied if the target container trusts the intermediate container to vouch for the
authenticity of the propagated principal. The call is made using the intermediate container’s principal
and authentication data, while also carrying the propagated principal of the initiating client. The
invocation on the target enterprise bean is authorized and performed using the propagated principal.
This procedure also avoids the overhead associated with authentication of clients on every remote
invocation in a chain.

EJB containers are required to provide the Deployer or Administrator with the tools to configure trust
relationships for interactions with intermediate web or EJB containers100. If a trust relationship is set
up, the containers are usually configured to perform mutual authentication, unless the security of the
network can be ensured by some physical means. If the network is physically secure, the target EJB
container may be configured to trust all client containers. After a trust relationship is set up, the target
EJB container does not need to independently authenticate the initiating client principal sent by the
intermediate container on invocations. Thus only the principal name of the initiating client (which
may include a realm) needs to be propagated. After a trust relationship has been established, the target
EJB container must be able to accept invocations carrying only the principal name of the initiating
client.

For the current interoperability needs of Java EE, it is assumed that trust relationships are transitive,
such that if a target container trusts an intermediate container, it implicitly trusts all containers
trusted by the intermediate container.

If no trust relationship has been set up between a target EJB container and an intermediate web or EJB
container, the target container must not accept principals propagated from that intermediate
container, hence the target container needs to have access to and independently verify the initiating
client principal’s authentication data.

Web and EJB containers are required to support caller propagation mode (where the initiating client’s

10.9. Security Interoperability

236 Jakarta Enterprise Beans, Core Features DRAFT

#a10320

principal is propagated down the chain of calls on enterprise beans) and run-as mode (where the
web/EJB component’s run-as identity is propagated). This is needed for scenarios 1, 3 and 4 where the
internet or intranet user’s principal needs to be propagated to the target EJB container.

10.9.1.2. Application Client Authentication

Application client containers that have authentication infrastructure (such as certificates, Kerberos)
can:

authenticate the user by interacting with an authentication service (e.g. the Kerberos KDC) in the
enterprise

inherit an authentication context which was established at system login time from the operating
system process, or

obtain the user’s certificate from a client-side store.

These may be achieved by plugging in a Java Authentication and Authorization Service (JAAS) login
module for the particular authentication service. After authentication is completed, a credential is
associated with the client’s thread of execution, which is used for all invocations on enterprise beans
made from that thread.

If there is no authentication infrastructure installed in the client’s environment, or the authentication
infrastructure is not capable of authenticating at the transport protocol layer, the client may send its
private credentials (e.g. password) over a secure connection to the EJB server, which authenticates the
user by interacting with an authentication service (e.g. a secure user/password database). This is
similar to the basic authentication feature of HTTP.

10.9.2. Securing EJB Invocations

This subsection describes the interoperable protocol requirements for providing authentication,
protection of integrity and confidentiality, and principal propagation for invocations on enterprise
beans. The invocation takes place over an enterprise’s intranet as described in the scenarios in section
See Interoperability Scenarios. Since EJB invocations use the IIOP protocol, we need to secure IIOP
messages between client and server containers. The client container may be any of the Java EE
containers; the server container is an EJB container.

The secure interoperability requirements for EJB 2.0 (and later) and other J2EE 1.3 (and later)
containers are based on Conformance Level 0 of the Common Secure Interoperability version 2 (CSIv2)
Final Available specification See Common Secure Interoperability Version 2, which was developed by
the OMG. EJB, web, and application client containers must support all requirements of Conformance
Level 0 of the CSIv2 specification. The following subsections describe how the CSIv2 features are used
to realize the scenarios described in section See Interoperability Scenarios.

10.9.2.1. Secure Transport Protocol

The Secure Sockets Layer (SSL 3.0) protocol See The SSL and the related IETF standard Transport Layer

10.9. Security Interoperability

DRAFT Jakarta Enterprise Beans, Core Features 237

Ejb.html#a3337
Ejb.html#a9871
Ejb.html#a3337
Ejb.html#a9870

Security (TLS 1.0) protocol See RFC 2246: provide authentication and message protection (that is,
integrity and/or confidentiality) at the transport layer. The original SSL and TLS specifications
supported only X.509 certificates for authenticating principals. Recently, Kerberos-based
authentication mechanisms and cipher suites have been defined for TLS (RFC 2712 See RFC 2712:
Addition of Kerberos Cipher). Thus the TLS specification is capable of supporting the two main security
technologies that are expected to be widely deployed in enterprises.

EJB, web and application client containers are required to support both SSL 3.0 and TLS 1.0 as security
protocols for IIOP. This satisfies interoperability requirement 3 in section See Overview of
Interoperability Requirements. Compliant containers must be capable of using the following public key
SSL/TLS ciphersuites based on policies set by the System Administrator:

TLS_RSA_WITH_RC4_128_MD5

SSL_RSA_WITH_RC4_128_MD5

TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA101

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

TLS_RSA_EXPORT_WITH_RC4_40_MD5

SSL_RSA_EXPORT_WITH_RC4_40_MD5

TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

 _Support for Kerberos ciphersuites is not
specified._

 _When using IIOP over SSL, a secure channel
between client and server containers is established at the SSL layer.
The SSL handshake layer handles authentication (either mutual or
server-only) between containers, negotiation of cipher suite for bulk
data encryption, and optionally provides a compression method. The SSL
record layer performs confidentiality and integrity protection_
on application data. Since compliant Java EE
products are already required to support SSL (HTTPS for Internet
communication), the use of SSL/TLS provides a relatively easy route to
interoperable security at the transport layer.

10.9.2.2. Security Information in IORs

Before initiating a secure connection to the EJB container, the client needs to know the hostname and

10.9. Security Interoperability

238 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9868
Ejb.html#a9869
Ejb.html#a9869
Ejb.html#a3364
Ejb.html#a3364
#a10321

port number at which the server is listening for SSL connections, and the security protocols supported
or required by the server object. This information is obtained from the EJBObject or EJBHome
reference’s IOR.

The CSIv2 specification See Common Secure Interoperability Version 2 describes the
TAG_CSI_SEC_MECH_LIST tagged component which is included in the IORs of secured objects. This
component contains a sequence of CSIIOP::CompoundSecMech structures (in decreasing order of the
server’s preference) that contain the target object’s security information for transport layer and
service context layer mechanisms. This information includes the server’s SSL/TLS port, its security
principal and supported/required security mechanisms.

EJB containers must be capable of inserting the CSIv2 tagged components into the IORs for EJBObject
and EJBHome references, based on the Deployer or System Administrator’s security policy settings.
Compliant EJB containers must follow the Conformance Level 0 rules described in the CSIv2
specification for constructing these IORs.

 _EJB containers must also be capable of
creating IORs that allow access to enterprise beans over unprotected
IIOP, based on the security policies set by the Deployer or System
Administrator._

10.9.2.3. Propagating Principals and Authentication Data in IIOP Messages

In scenarios where client authentication does not occur at the transport layer it is necessary to support
transfer of authentication data between two containers in the IIOP message service context. When an
intermediate client container does not have authentication data for the initiating client, it is necessary
to support propagation of client principals in the IIOP message service context.

It is assumed that all information exchanged between client and server at the transport layer is also
available to the containers: e.g. the certificates used for authentication at the SSL layer may be used by
the server container for authorization.

The following cases are required to be supported:

Application client invocations on enterprise beans with mutual authentication between the application
client and EJB container (C and S1) at the SSL layer (scenario 2.1 in section See Interactions Between
Application Client Containers and EJB Containers Within an Enterprise’s Intranet, interoperability
requirement 4.1 in section See Overview of Interoperability Requirements). For example, this is
possible when the enterprise has a Kerberos-based authentication infrastructure or when client-side
certificates have been installed. In this case the security context of the IIOP message sent from C to S1
should not contain any additional information.

10.9. Security Interoperability

DRAFT Jakarta Enterprise Beans, Core Features 239

Ejb.html#a9871
Ejb.html#a3351
Ejb.html#a3351
Ejb.html#a3364

Application client invocations on enterprise beans with server-only authentication between the
application client and EJB container (C and S1) at the SSL layer (scenario 2.2 in section See Interactions
Between Application Client Containers and EJB Containers Within an Enterprise’s Intranet,
interoperability requirement 4.2 in section See Overview of Interoperability Requirements). This
usually happens when the client cannot authenticate in the transport. In this case, the client container
must be capable of inserting into the IIOP message a CSIv2 security context with a client authentication
token that contains the client C’s authentication data. Once the EJB container S1 has authenticated the
client, it may or may not maintain state about the client, so subsequent invocations from the client on
the same network connection may need to be authenticated again. The client and server containers
must follow the Conformance Level 0 rules in the CSIv2 specification for client authentication. In
particular, support for the GSSUP username-password authentication mechanism is required. Support
for other GSSAPI mechanisms (such as Kerberos) to perform client authentication at the IIOP layer is
optional.

Invocations from Web/EJB clients to enterprise beans with a trust relationship between the client
container S1 and server container S2 (scenarios 1,3 and 4 in section See Interactions Between Two EJB
Containers in an Enterprise’s Intranet, interoperability requirements five and six in section See
Overview of Interoperability Requirements). S2 does not need to independently authenticate the
initiating client C. In this case the client container S1 must insert into the IIOP message a security
context with an identity token in the format described in the CSIv2 specification. The principal may be
propagated as an X.509 certificate chain or as a X.501 distinguished name or as a principal name
encoded in the GSS exported name format, as described in the CSIv2 specification. The identity
propagated is determined as follows:

If the client Web/EJB component is configured to use caller identity, and the caller C authenticated itself
to S1, then the identity token contains the initiating client C’s identity.

If the client component is configured to use caller identity, and the caller C did not authenticate itself to
S1, then the identity token contains the anonymous type.

If the client component is configured to use a run-as identity then the identity token contains the run-
as identity.

Java EE containers are required to support the stateless mode of propagating principal and
authentication information defined in CSIv2 (where the server does not store any state for a particular
client principal across invocations), and may optionally support the stateful mode.

The caller principal String provided by EJBContext.getCallerPrincipal().getName() is defined as follows:

For case one, the principal should be derived from the distinguished name obtained from the first
X.509 certificate in the client’s certificate chain that was provided to the server during SSL mutual
authentication.

For case two, the principal should be derived from the username obtained from the client
authentication token in the CSIv2 security context of the IIOP message. For the GSSUP username-
password mechanism, the principal should be derived from the username in the

10.9. Security Interoperability

240 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a3351
Ejb.html#a3351
Ejb.html#a3364
Ejb.html#a3356
Ejb.html#a3356
Ejb.html#a3364
Ejb.html#a3364

GSSUP::InitialContextToken structure.

For case three, the principal depends on the identity token type in the CSIv2 security context:

If the type is X.509 certificate chain, then the principal should be derived from the distinguished name
from the first certificate in the chain.

If the type is distinguished name, then the principal should be derived from the distinguished name.

If the type is principal name propagated as a GSS exported name, then the principal should be derived
from the mechanism-specific principal name.

If the anonymous principal type was propagated or the identity token was absent, then
EJBContext.getCallerPrincipal().getName() returns a product-specific unauthenticated principal name.

10.9.2.4. Security Configuration for Containers

 _Since the interoperability scenarios
involve IIOP/SSL usage in intranets, it is assumed that client and
server container administrators cooperatively configure a consistent set
of security policies for the enterprise._

 _At product installation or application
deployment time, client and server container administrators may
optionally configure the container and SSL infrastructure as described
below._ These preferences may be specified at any level of granularity
(e.g. per host or per container process or per enterprise bean).

 _Configure the list of supported SSL cipher
suites in preference order._

For server containers, configure a list of trusted client container principals with whom the server has a
trust relationship.

 _Configure authentication preferences and
requirements (e.g. if the server prefers authenticated clients to
anonymous clients). In particular, if a trust relationship has been
configured between two servers, then mutual authentication should be
required unless there is physical network security._

10.9. Security Interoperability

DRAFT Jakarta Enterprise Beans, Core Features 241

 _If the client and server are using
certificates for authentication, configure a trusted common certificate
authority for both client and server. If using Kerberos, configure the
client and server with the same KDC or cooperating KDCs._

 _Configure a restricted list of trusted
server principals that a client container is allowed to interact with,
to prevent the client’s private credentials such as password from being
sent to untrusted servers._

10.9.2.5. Runtime Behavior

 _Client containers determine whether to use
SSL for an enterprise bean invocation by using the security policies
configured by the client administrator for interactions with the target
host or enterprise bean, and the_
_target_requires_ _information in the CSIv2 tagged component in the
target enterprise bean’s IOR. If either the client configuration
requires secure interactions with the enterprise bean, or the enterprise
bean requires a secure transport, the client should initiate an SSL
connection to the server._ The client must follow the rules described in
the CSIv2 specification Conformance Level 0 for interpreting security
information in IORs and including security context information in IIOP
messages.

 _When an EJB container receives an IIOP
message, its behavior depends on deployment time configuration, run-time
information exchanged with the client at the SSL layer, and
principal/authentication data contained in the IIOP message service
context. EJB containers are required to follow the protocol rules
prescribed by the CSIv2 specification_ Conformance Level 0 _._

When the System Administrator changes the security policies associated with an enterprise bean, the
IORs for EJB references should be updated. When the bean has existing clients holding IORs, it is
recommended that the security policy change should be handled by the client and server containers
transparently to the client application if the old security policy is compatible with the new one. This
may be done by using interoperable GIOP 1.2 forwarding mechanisms.

10.9. Security Interoperability

242 Jakarta Enterprise Beans, Core Features DRAFT

Chapter 11. Enterprise Bean Environment
This chapter specifies how enterprise beans declare dependencies on external resources and other
objects in their environment, and how those items can be injected into enterprise beans or accessed in
the JNDI naming context.

11.1. Overview
The Application Assembler and Deployer should be able to customize an enterprise bean’s business logic
without accessing the enterprise bean’s source code.

In addition, ISVs typically develop enterprise beans that are, to a large degree, independent from the
operational environment in which the application will be deployed. Most enterprise beans must access
resource managers and external information. The key issue is how enterprise beans can locate external
information without prior knowledge of how the external information is named and organized in the
target operational environment. The JNDI naming context and Java language metadata annotations
provide this capability.

The enterprise bean environment mechanism attempts to address both of the above issues.

This chapter is organized as follows:

• Enterprise Bean’s Environment as a JNDI Naming Context defines the general rules for the use of
the JNDI naming context and its interaction with Java language annotations that reference entries
in the naming context.

• Responsibilities by EJB Role defines the general responsibilities for each of the EJB roles, such as
Bean Provider, Application Assembler, Deployer, and Container Provider.

• Simple Environment Entries defines the basic mechanisms and interfaces that specify and access
the enterprise bean’s environment. The section illustrates the use of the enterprise bean’s
environment for generic customization of the enterprise bean’s business logic.

• EJB References defines the means for obtaining the business interface, no-interface view, or home
interface of another enterprise bean using an EJB reference. An EJB reference is a special entry in
the enterprise bean’s environment.

• Web Service References defines the means for obtaining the web service interface using a web
service reference. A web service reference is a special entry in the enterprise bean’s environment.

• Resource Manager Connection Factory References defines the means for obtaining a resource
manager connection factory using a resource manager connection factory reference. A resource
manager connection factory reference is a special entry in the enterprise bean’s environment.

• Resource Environment References defines the means for obtaining an administered object that is
associated with a resource (e.g., a CCI InteractionSpec) using a resource environment reference . A
resource environment reference is a special entry in the enterprise bean’s environment.

• Message Destination References defines the means for obtaining a message destination associated

11.1. Overview

DRAFT Jakarta Enterprise Beans, Core Features 243

with a resource using a message destination reference. Message destination references allow the
flow of messages within an application to be specified. A message destination reference is a special
entry in the enterprise bean’s environment.

• Persistence Unit References describes the means for obtaining an entity manager factory using a
persistence unit reference.

• Persistence Context References describes the means for obtaining an entity manager using a
persistence context reference.

• UserTransaction Interface describes the use by eligible enterprise beans of references to a
UserTransaction object in the bean’s environment to start, commit, and rollback transactions.

• ORB References describes the use of references to a CORBA ORB object in the enterprise bean’s
environment.

• TimerService References describes the means for obtaining a TimerService object.

• EJBContext References describes the means for obtaining a bean’s EJBContext object.

• Support for Other Resources and Configuration Parameters describes the requirements for other
resources and configuration parameters.

11.2. Enterprise Bean’s Environment as a JNDI Naming
Context
The enterprise bean’s environment is a mechanism that allows customization of the enterprise bean’s
business logic during deployment or assembly. The enterprise bean’s environment allows the
enterprise bean to be customized without the need to access or change the enterprise bean’s source
code.

Annotations and deployment descriptors are the main vehicles for conveying access information to the
Application Assembler and Deployer about beans’ requirements for customization of business logic
and access to external information.

The container implements the enterprise bean’s environment, and provides it as a JNDI naming
context. The enterprise bean’s environment is used as follows:

1. The enterprise bean makes use of entries from the environment. Entries from the environment
may be injected by the container into the bean’s fields or methods, or the methods of the bean may
access the environment using the EJBContext lookup method or the JNDI interfaces. The Bean
Provider declares in Java language metadata annotations or in the deployment descriptor all the
environment entries that the enterprise bean expects to be provided in its environment at runtime.

2. The container provides an implementation of the JNDI naming context that stores the enterprise
bean environment. The container also provides the tools that allow the Deployer to create and
manage the environment of each enterprise bean.

3. The Deployer uses the tools provided by the container to create and initialize the environment
entries that are declared by means of the enterprise bean’s annotations or deployment descriptor.

11.2. Enterprise Bean’s Environment as a JNDI Naming Context

244 Jakarta Enterprise Beans, Core Features DRAFT

The Deployer can set and modify the values of the environment entries.

4. The container injects entries from the environment into the enterprise bean’s fields or methods as
specified by the bean’s metadata annotations or the deployment descriptor.

5. The container makes the environment naming context available to the enterprise bean instances at
runtime. The enterprise bean’s instances can use the EJBContext lookup method or the JNDI
interfaces to obtain the values of the environment entries.

The container must make an enterprise bean’s environment available to any interceptor class and any
JAX-WS message handler for the bean as well. The interceptor and web service handler classes for an
enterprise bean share that bean’s environment. Within the context of this chapter, the term "bean"
should be construed as including a bean’s interceptor and handler classes unless otherwise noted.

11.2.1. Sharing of Environment Entries

For enterprise beans packaged in a standalone ejb-jar file or in an ejb-jar file within an .ear file, each
enterprise bean defines its own set of environment entries. In this case, all instances of an enterprise
bean share the same environment entries; the environment entries are not shared with other
enterprise beans.

In a .war file, there is only a single naming environment shared between all the components in the
module. For enterprise beans packaged in a .war file, all enterprise beans share this single naming
environment. The enterprise beans share their environment entries with all other enterprise bean
components and web components in the .war file.

Enterprise bean instances are not allowed to modify the bean’s environment at runtime.

Compatibility Note: If an enterprise bean written to the EJB 2.1 API specification is deployed multiple
times in the same container, each deployment results in the creation of a distinct home. The Deployer may
set different values for the enterprise bean environment entries for each home.

In general, lookups of objects in the JNDI java: namespace are required to return a new instance of the
requested object every time. Exceptions are allowed for the following:

• The container knows the object is immutable (for example, objects of type java.lang.String), or
knows that the application can’t change the state of the object.

• The object is defined to be a singleton, such that only one instance of the object may exist in the
JVM.

• The name used for the lookup is defined to return an instance of the object that might be shared.
The name java:comp/ORB is such a name.

In these cases, a shared instance of the object may be returned. In all other cases, a new instance of the
requested object must be returned on each lookup. Note that, in the case of resource adapter
connection objects, it is the resource adapter’s ManagedConnectionFactory implementation that is
responsible for satisfying this requirement.

11.2. Enterprise Bean’s Environment as a JNDI Naming Context

DRAFT Jakarta Enterprise Beans, Core Features 245

Each injection of an object corresponds to a JNDI lookup. Whether a new instance of the requested
object is injected, or whether a shared instance is injected, is determined by the rules described above.

Terminology warning: The enterprise bean’s "environment" should not be confused with the "environment
properties" defined in the JNDI documentation.

11.2.2. Annotations for Environment Entries

A field or method of a bean class may be annotated to request that an entry from the bean’s
environment be injected. Any of the types of resources or other environment entries[1] described in this
chapter may be injected. Injection may also be requested using entries in the deployment descriptor
corresponding to each of these resource types. The field or method may have any access qualifier
(public, private, etc.) but must not be static.

• A field of the bean class may be the target of injection. The field must not be final. By default, the
name of the field is combined with the name of the class in which the annotation is used and is
used directly as the name in the bean’s naming context. For example, a field named myDatabase in
the class MySessionBean in the package com.acme.example would correspond to the JNDI name
java:comp/env/com.acme.example.MySessionBean/myDatabase. The annotation also allows the JNDI
name to be specified explicitly.

• Environment entries may also be injected into the bean through bean methods that follow the
naming conventions for JavaBeans properties. The annotation is applied to the set method for the
property, which is the method that is called to inject the environment entry. The JavaBeans
property name (not the method name) is used as the default JNDI name. For example, a method
named setMyDatabase in the same MySessionBean class would correspond to the JNDI name
java:comp/env/com.example.MySessionBean/myDatabase.

• When a deployment descriptor entry is used to specify injection, the JNDI name and the instance
variable name or property name are both specified explicitly. Note that the JNDI name is always
relative to the java:comp/env naming context.

Each resource may only be injected into a single field or method of the bean. Requesting injection of
the java:comp/env/com.example.MySessionBean/myDatabase resource into both the setMyDatabase method
and the myDatabase instance variable is an error. Note, however, that either the field or the method
could request injection of a resource of a different (non-default) name. By explicitly specifying the JNDI
name of a resource, a single resource may be injected into multiple fields or methods of multiple
classes.

Annotations may also be applied to the bean class itself. These annotations declare an entry in the
bean’s environment, but do not cause the resource to be injected. Instead, the bean is expected to use
the EJBContext lookup method or the methods of the JNDI API to lookup the entry. When the annotation
is applied to the bean class, the JNDI name and the environment entry type must be explicitly
specified.

Annotations may appear on the bean class, or on any superclass. A resource annotation on any class in
the inheritance hierarchy defines a resource needed by the bean. However, injection of such resources

11.2. Enterprise Bean’s Environment as a JNDI Naming Context

246 Jakarta Enterprise Beans, Core Features DRAFT

follows the Java language overriding rules for the visibility of fields and methods. A method definition
that overrides a method on a superclass defines the resource, if any, to be injected into that method. An
overriding method may request injection of a different resource than is requested by the superclass, or
it may request no injection even though the superclass method requests injection.

In addition, fields or methods that are not visible in or are hidden (as opposed to overridden) by a
subclass may still request injection. This allows, for example, a private field to be the target of injection
and that field to be used in the implementation of the superclass, even though the subclass has no
visibility into that field and doesn’t know that the implementation of the superclass is using an injected
resource. Note that a declaration of a field in a subclass with the same name as a field in a superclass
always causes the field in the superclass to be hidden.

11.2.3. Annotations and Deployment Descriptors

Environment entries may be declared by the use of annotations, without need for any deployment
descriptor entries. Environment entries may also be declared by deployment descriptor entries,
without need for any annotations. The same environment entry may be declared using both an
annotation and a deployment descriptor entry. In this case, the information in the deployment
descriptor entry may be used to override some of the information provided in the annotation. This
approach may be used by an Application Assembler to override information provided by the Bean
Provider. Deployment descriptor entries should not be used to request injection of a resource into a
field or method that has not been designed for injection.

The following rules apply to how a deployment descriptor entry may override a Resource annotation:

• The relevant deployment descriptor entry is located based on the JNDI name used with the
annotation (either defaulted or provided explicitly).

• The type specified in the deployment descriptor must be assignable to the type of the field or
property or the type specified in the Resource annotation.

• The description, if specified, overrides the description element of the annotation.

• The injection target, if specified, must name exactly the annotated field or property method.

• The mapped-name element, if specified, overrides the mappedName element of the annotation.

• The res-sharing-scope element, if specified, overrides the shareable element of the annotation. In
general, the Application Assembler or Deployer should never change the value of this element, as
doing so is likely to break the application.

• The res-auth element, if specified, overrides the authenticationType element of the annotation. In
general, the Application Assembler or Deployer should never change the value of this element, as
doing so is likely to break the application.

• The lookup-name element, if specified, overrides the lookup element of the annotation.

Restrictions on the overriding of environment entry values depend on the type of environment entry.

The rules for how a deployment descriptor entry may override an EJB annotation are described in EJB

11.2. Enterprise Bean’s Environment as a JNDI Naming Context

DRAFT Jakarta Enterprise Beans, Core Features 247

References. The rules for how a deployment descriptor entry may override a PersistenceUnit or
PersistenceContext annotation are described in Persistence Unit References and Persistence Context
References. The rules for web services references and how a deployment descriptor entry may
override a WebServiceRef annotation are included in the Web Services for Java EE specification[a9879].

11.3. Responsibilities by EJB Role
This section describes the responsibilities of the various EJB roles with regard to the specification and
handling of environment entries. The sections that follow describe the responsibilities that are specific
to the different types of objects that may be stored in the naming context.

11.3.1. Bean Provider’s Responsibilities

The Bean Provider may use Java language annotations or deployment descriptor entries to request
injection of a resource from the naming context, or to declare entries that are needed in the naming
context. The Bean Provider may also use the EJBContext lookup method or the JNDI APIs to access
entries in the naming context. Deployment descriptor entries may also be used by the Bean Provider to
override information provided by annotations.

When using JNDI interfaces directly, an enterprise bean instance creates a
javax.naming.InitialContext object by using the constructor with no arguments, and looks up the
environment naming via the InitialContext under the name java:comp/env.

The enterprise bean’s environment entries are stored directly in the environment naming context, or
in any of its direct or indirect subcontexts.

The value of an environment entry is of the Java type declared by the Bean Provider in the metadata
annotation or deployment descriptor, or the type of the instance variable or setter method parameter
of the method with which the metadata annotation is associated.

11.3.2. Application Assembler’s Responsibility

The Application Assembler is allowed to modify the values of the environment entries set by the Bean
Provider, and is allowed to set the values of those environment entries for which the Bean Provider
has not specified any initial values. The Application Assembler uses the deployment descriptor to
override settings made by the Bean Provider, whether these were defined by the Bean Provider in the
deployment descriptor or in the source code using annotations.

11.3.3. Deployer’s Responsibility

The Deployer must ensure that the values of all the environment entries declared by an enterprise
bean are created and/or set to meaningful values.

The Deployer can modify the values of the environment entries that have been previously set by the
Bean Provider and/or Application Assembler, and must set the values of those environment entries for

11.3. Responsibilities by EJB Role

248 Jakarta Enterprise Beans, Core Features DRAFT

which no value has been specified.

The description elements provided by the Bean Provider or Application Assembler help the Deployer
with this task.

11.3.4. Container Provider Responsibility

The Container Provider has the following responsibilities:

• Provide a deployment tool that allows the Deployer to set and modify the values of the enterprise
bean’s environment entries.

• Implement the java:comp/env, java:module, java:app and java:global environment naming contexts,
and provide them to the enterprise bean instances at runtime. The naming context must include all
the environment entries declared by the Bean Provider, with their values supplied in the
deployment descriptor or set by the Deployer. The environment naming context must allow the
Deployer to create subcontexts if they are needed by an enterprise bean.

• Inject entries from the naming environment, as specified by annotations or by the deployment
descriptor.

• The container must ensure that the enterprise bean instances have only read access to their
environment variables. The container must throw the
javax.naming.OperationNotSupportedException from all the methods of the javax.naming.Context
interface that modify the environment naming context and its subcontexts.

11.4. Simple Environment Entries
A simple environment entry is a configuration parameter used to customize an enterprise bean’s
business logic. The environment entry values may be one of the following Java types: String, Character,
Byte, Short, Integer, Long, Boolean, Double, Float, Class, and any subclass of Enum.

The following subsections describe the responsibilities of each EJB role.

11.4.1. Bean Provider’s Responsibilities

This section describes the Bean Provider’s view of the bean’s environment, and defines his or her
responsibilities. The first subsection describes annotations for injecting simple environment entries;
the second describes the API for accessing simple environment entries; and the third describes syntax
for declaring the environment entries in a deployment descriptor.

11.4.1.1. Injection of Simple Environment Entries Using Annotations

The Bean Provider uses the Resource annotation to annotate a field or method of the bean class as a
target for the injection of a simple environment entry. The name of the environment entry is as
described in Annotations for Environment Entries; the type is as described in Simple Environment
Entries. Note that the container will unbox the environment entry as required to match it to a

11.4. Simple Environment Entries

DRAFT Jakarta Enterprise Beans, Core Features 249

primitive type used for the injection field or method. The authenticationType and shareable elements of
the Resource annotation must not be specified: simple environment entries are not shareable and do
not require authentication.

The following code example illustrates how an enterprise bean uses annotations for the injection of
environment entries.

@Stateless
public class EmployeeServiceBean implements EmployeeService {
 ...
 // The maximum number of tax exemptions, configured by Deployer
 @Resource
 int maxExemptions;

 // The minimum number of tax exemptions, configured by Deployer
 @Resource
 int minExemptions;

 public void setTaxInfo(int numberOfExemptions,...)
 throws InvalidNumberOfExemptionsException {
 ...
 // Use the environment entries to customize business logic.
 if (numberOfExemptions > maxExemptions
 || numberOfExemptions < minExemptions)
 throw new InvalidNumberOfExemptionsException();
 }
}

The following code example illustrates how an environment entry can be assigned a value by referring
to another entry, potentially in a different namespace.

// an entry that gets its value from an application-wide entry
@Resource(lookup="java:app/env/timeout")
int timeout;

11.4.1.2. Programming Interfaces for Accessing Simple Environment Entries

In addition to the use of injection as described above, an enterprise bean may access environment
entries dynamically. This may be done by means of the EJBContext lookup method or by direct use of
the JNDI interfaces. The environment entries are declared by the Bean Provider by means of
annotations on the bean class or in the deployment descriptor.

When the JNDI interfaces are used directly, the bean instance creates a javax.naming.InitialContext
object by using the constructor with no arguments, and looks up the naming environment via the
InitialContext under the name java:comp/env. The bean’s environmental entries are stored directly in

11.4. Simple Environment Entries

250 Jakarta Enterprise Beans, Core Features DRAFT

the environment naming context, or its direct or indirect subcontexts.

The following code example illustrates how an enterprise bean accesses its environment entries when
the JNDI APIs are used directly. In this example, the names under which the entries are accessed are
defined by the deployment descriptor, as shown in the example of Declaration of Simple Environment
Entries in the Deployment Descriptor.

@Stateless
public class EmployeeServiceBean implements EmployeeService {
 ...
 public void setTaxInfo(int numberOfExemptions, ...)
 throws InvalidNumberOfExemptionsException {
 ...
 // Obtain the enterprise bean’s environment naming context.
 Context initCtx = new InitialContext();
 Context myEnv = (Context)initCtx.lookup("java:comp/env");

 // Obtain the maximum number of tax exemptions
 // configured by the Deployer.
 Integer maxExemptions = (Integer)myEnv.lookup("maxExemptions");

 // Obtain the minimum number of tax exemptions
 // configured by the Deployer.
 Integer minExemptions = (Integer)myEnv.lookup("minExemptions");

 // Use the environment entries to customize business logic.
 if (numberOfExeptions > maxExemptions
 || numberOfExemptions < minExemptions)
 throw new InvalidNumberOfExemptionsException();

 // Get some more environment entries. These environment
 // entries are stored in subcontexts.
 String val1 = (String)myEnv.lookup("foo/name1");
 Boolean val2 = (Boolean)myEnv.lookup("foo/bar/name2");

 // The enterprise bean can also lookup using full pathnames.
 Integer val3 = (Integer)initCtx.lookup("java:comp/env/name3");
 Integer val4 = (Integer)initCtx.lookup("java:comp/env/foo/name4");
 ...
 }
}

11.4.1.3. Declaration of Simple Environment Entries in the Deployment Descriptor

The Bean Provider must declare all the simple environment entries accessed from the enterprise
bean’s code. The simple environment entries are declared either using annotations in the bean class

11.4. Simple Environment Entries

DRAFT Jakarta Enterprise Beans, Core Features 251

code or using the env-entry elements in the deployment descriptor.

Each env-entry deployment descriptor element describes a single environment entry. The env-entry
element consists of an optional description of the environment entry, the environment entry name
relative to the java:comp/env context, the expected Java type of the environment entry value (i.e., the
type of the object returned from the EJBContext or JNDI lookup method), and an optional environment
entry value.

See Sharing of Environment Entries for environment entry name scoping rules.

If the Bean Provider provides a value for an environment entry using the env-entry-value element, the
value can be changed later by the Application Assembler or Deployer. The value must be a string that
is valid for the constructor of the specified type that takes a single String parameter, or for
java.lang.Character, a single character.

The following example is the declaration of environment entries used by the EmployeeServiceBean
whose code was illustrated in the previous subsection.

11.4. Simple Environment Entries

252 Jakarta Enterprise Beans, Core Features DRAFT

<enterprise-beans>
 <session>
 ...
 <ejb-name>EmployeeService</ejb-name>
 <ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
 ...
 <env-entry>
 <description>
 The maximum number of tax exemptions
 allowed to be set.
 </description>
 <env-entry-name>maxExemptions</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>15</env-entry-value>
 </env-entry>
 <env-entry>
 <description>
 The minimum number of tax exemptions
 allowed to be set.
 </description>
 <env-entry-name>minExemptions</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>1</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>foo/name1</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>value1</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>foo/bar/name2</env-entry-name>
 <env-entry-type>java.lang.Boolean</env-entry-type>
 <env-entry-value>true</env-entry-value>
 </env-entry>
 <env-entry>
 <description>Some description.</description>
 <env-entry-name>name3</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 </env-entry>
 <env-entry>
 <env-entry-name>foo/name4</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>10</env-entry-value>
 </env-entry>
 ...
 </session>
</enterprise-beans>

11.4. Simple Environment Entries

DRAFT Jakarta Enterprise Beans, Core Features 253

Injection of environment entries may also be specified using the deployment descriptor, without need
for Java language annotations. The following is an example of the declaration of environment entries
corresponding to the example of Injection of Simple Environment Entries Using Annotations.

11.4. Simple Environment Entries

254 Jakarta Enterprise Beans, Core Features DRAFT

<enterprise-beans>
 <session>
 ...
 <ejb-name>EmployeeService</ejb-name>
 <ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
 ...
 <env-entry>
 <description>
 The maximum number of tax exemptions
 allowed to be set.
 </description>
 <env-entry-name>
 com.wombat.empl.EmployeeService/maxExemptions
 </env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>15</env-entry-value>
 <injection-target>
 <injection-target-class>
 com.wombat.empl.EmployeeServiceBean
 </injection-target-class>
 <injection-target-name>maxExemptions</injection-target-name>
 </injection-target>
 </env-entry>
 <env-entry>
 <description>
 The minimum number of tax exemptions
 allowed to be set.
 </description>
 <env-entry-name>
 com.wombat.empl.EmployeeService/minExemptions
 </env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>1</env-entry-value>
 <injection-target>
 <injection-target-class>
 com.wombat.empl.EmployeeServiceBean
 </injection-target-class>
 <injection-target-name>minExemptions</injection-target-name>
 </injection-target>
 </env-entry>
 ...
 </session>
</enterprise-beans>

It is often convenient to declare a field as an injection target, but to specify a default value in the code,
as illustrated in the following example.

11.4. Simple Environment Entries

DRAFT Jakarta Enterprise Beans, Core Features 255

// The maximum number of tax exemptions, configured by the Deployer.
@Resource
int maxExemptions = 4; // defaults to 4

To support this case, the container must only inject a value for the environment entry if the
Application Assembler or Deployer has specified a value to override the default value. The env-entry-
value element in the deployment descriptor is optional when an injection target is specified. If the
element is not specified, no value will be injected. In addition, if the element is not specified, the
named resource is not initialized in the naming context, and explicit lookups of the named resource
will fail.

The deployment descriptor equivalent of the lookup element of the Resource annotation is lookup-name.
The following deployment descriptor fragment is equivalent to the earlier example that used lookup.

<env-entry>
 <env-entry-name>
 com.wombat.empl.EmployeeServiceBean/timeout
 </env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <injection-target>
 <injection-target-class>
 com.wombat.empl.EmployeeServiceBean
 </injection-target-class>
 <injection-target-name>timeout</injection-target-name>
 </injection-target>
 <lookup-name>java:app/env/timeout</lookup-name>
</env-entry>

It is an error for both the env-entry-value and lookup-name elements to be specified for a given env-
entry element. If either element exists, an eventual lookup element of the corresponding Resource
annotation (if any) must be ignored. In other words, assignment of a value to an environment entry via
a deployment descriptor, either directly (env-entry-value) or indirectly (lookup-name), overrides any
assignments made via annotations.

11.4.2. Application Assembler’s Responsibility

The Application Assembler is allowed to modify the values of the simple environment entries set by
the Bean Provider, and is allowed to set the values of those environment entries for which the Bean
Provider has not specified any initial values. The Application Assembler may use the deployment
descriptor to override settings made by the Bean Provider, whether in the deployment descriptor or
using annotations.

11.4. Simple Environment Entries

256 Jakarta Enterprise Beans, Core Features DRAFT

11.4.3. Deployer’s Responsibility

The Deployer must ensure that the values of all the simple environment entries declared by an
enterprise bean are set to meaningful values.

The Deployer can modify the values of the environment entries that have been previously set by the
Bean Provider and/or Application Assembler, and must set the values of those environment entries for
which no value has been specified.

The description elements provided by the Bean Provider or Application Assembler help the Deployer
with this task.

11.4.4. Container Provider Responsibility

The Container Provider has the following responsibilities:

• Provide a deployment tool that allows the Deployer to set and modify the values of the enterprise
bean’s environment entries.

• Implement the java:comp/env, java:module, java:app and java:global environment naming contexts,
and provide them to the enterprise bean instances at runtime. The naming context must include all
the environment entries declared by the Bean Provider, with their values supplied in the
deployment descriptor or set by the Deployer. The environment naming context must allow the
Deployer to create subcontexts if they are needed by an enterprise bean.

• Inject entries from the naming environment into the bean instance, as specified by the annotations
on the bean class or by the deployment descriptor.

• The container must ensure that the enterprise bean instances have only read access to their
environment variables. The container must throw the
javax.naming.OperationNotSupportedException from all the methods of the javax.naming.Context
interface that modify the environment naming context and its subcontexts.

11.5. EJB References
This section describes the programming and deployment descriptor interfaces that allow the Bean
Provider to refer to the business interfaces, no-interface views, or home interfaces of other enterprise
beans using "logical" names called EJB references. The EJB references are special entries in the
enterprise bean’s environment. The Deployer binds the EJB references to the enterprise bean business
interfaces, no-interface views, or home interfaces in the target operational environment, as
appropriate.

The deployment descriptor also allows the Application Assembler to link an EJB reference declared in
one enterprise bean to another enterprise bean contained in the same ejb-jar file, or in another ejb-jar
file in the same Java EE application unit. The link is an instruction to the tools used by the Deployer
that the EJB reference should be bound to the business interface, no-interface view, or home interface
of the specified target enterprise bean. This linking can also be specified by the Bean Provider using

11.5. EJB References

DRAFT Jakarta Enterprise Beans, Core Features 257

annotations in the source code of the bean class.

11.5.1. Bean Provider’s Responsibilities

This section describes the Bean Provider’s view and responsibilities with respect to EJB references. The
first subsection describes annotations for injecting EJB references; the second describes the API for
accessing EJB references; and the third describes syntax for declaring the EJB references in a
deployment descriptor.

11.5.1.1. Injection of EJB References

The Bean Provider uses the EJB annotation to annotate a field or setter property method of the bean
class as a target for the injection of an EJB reference.

EJB annotation contains the following elements:

• The name element refers to the name by which the resource is to be looked up in the environment.

• The beanInterface element is the referenced interface type. The reference may be to a session
bean’s business interface, to a session bean’s no-interface view, or to the local home interface or
remote home interface of a session bean or an entity bean[2].

• The beanName element references the value of the name element of the Stateful or Stateless
annotation (or ejb-name element, if the deployment descriptor was used to define the name of th
bean). The beanName element allows disambiguation if multiple session beans in the ejb-jar
implement the same interface.

• The mappedName element is a product-specific name that the bean reference should be mapped to.
Applications that use mapped names may not be portable.

• The lookup element is a portable lookup string containing the JNDI name for the target EJB
component.

Either the beanName or the lookup element can be used to resolve the EJB dependency to the target
component. It is an error to specify values for both beanName and lookup.

The following example illustrates how an enterprise bean uses the EJB annotation to reference another
enterprise bean. The enterprise bean reference will have the name
java:comp/env/com.acme.example.ExampleBean/myCart in the referencing bean’s naming context, where
ExampleBean is the name of the class of the referencing bean and com.acme.example its package. The
target of the reference must be resolved by the Deployer, unless there is only one session bean
component within the same application that exposes a client view type which matches the EJB
reference.

11.5. EJB References

258 Jakarta Enterprise Beans, Core Features DRAFT

package com.acme.example;
@Stateless
public class ExampleBean implements Example {
 ...
 @EJB
 private ShoppingCart myCart;
 ...
}

The following example illustrates use of almost all portable elements of the EJB annotation. In this case,
the enterprise bean reference would have the name java:comp/env/ejb/shopping-cart in the
referencing bean’s naming context. This reference is linked to a bean named cart1 .

@EJB(
 name="ejb/shopping-cart",
 beanInterface=ShoppingCart.class,
 beanName="cart1",
 description="The shopping cart for this application"
)
private ShoppingCart myCart;

As an alternative to beanName , a reference to an EJB can use a session bean JNDI name by means of the
lookup annotation element. The following example uses a JNDI name in the application namespace.

@EJB(
 lookup="java:app/cartModule/ShoppingCart",
 description="The shopping cart for this application"
)
private ShoppingCart myOtherCart;

If the ShoppingCart bean were instead written to the EJB 2.1 client view, the EJB reference would be to
the bean’s home interface. For example:

@EJB(
 name="ejb/shopping-cart",
 beanInterface=ShoppingCartHome.class,
 beanName="cart1",
 description="The shopping cart for this application"
)
private ShoppingCartHome myCartHome;

If the ShoppingCart bean were instead written to the no-interface client view and was implemented by

11.5. EJB References

DRAFT Jakarta Enterprise Beans, Core Features 259

bean class ShoppingCartBean.class, the EJB reference would have type ShoppingCartBean.class. For
example:

@EJB(
 name="ejb/shopping-cart",
 beanInterface=ShoppingCartBean.class,
 beanName="cart1",
 description="The shopping cart for this application"
)
private ShoppingCartBean myCart;

11.5.1.2. EJB Reference Programming Interfaces

The Bean Provider may use EJB references to locate the business interfaces, no-interface views, or
home interfaces of other enterprise beans as follows.

• Assign an entry in the enterprise bean’s environment to the reference. (See Declaration of EJB
References in Deployment Descriptor for information on how EJB references are declared in the
deployment descriptor.)

• The EJB specification recommends, but does not require, that all references to other enterprise
beans be organized in the ejb subcontext of the bean’s environment (i.e., in the java:comp/env/ejb
JNDI context). Note that enterprise bean references declared by means of annotations will not, by
default, be in any subcontext.

• Look up the business interface, no-interface view, or home interface of the referenced enterprise
bean in the enterprise bean’s environment using the EJBContext lookup method or the JNDI API.

The following example illustrates how an enterprise bean uses an EJB reference to locate the remote
home interface of another enterprise bean using the JNDI APIs.

11.5. EJB References

260 Jakarta Enterprise Beans, Core Features DRAFT

@EJB(name="ejb/EmplRecord", beanInterface=EmployeeRecordHome.class)
@Stateless
public class EmployeeServiceBean
 implements EmployeeService {

 public void changePhoneNumber(...) {
 ...
 // Obtain the default initial JNDI context.
 Context initCtx = new InitialContext();

 // Look up the home interface of the EmployeeRecord
 // enterprise bean in the environment.
 Object result = initCtx.lookup(
 "java:comp/env/ejb/EmplRecord");

 // Convert the result to the proper type.
 EmployeeRecordHome emplRecordHome = (EmployeeRecordHome)
 javax.rmi.PortableRemoteObject.narrow(result,
 EmployeeRecordHome.class);
 ...
 }
}

In the example, the Bean Provider of the EmployeeServiceBean enterprise bean assigned the
environment entry ejb/EmplRecord as the EJB reference name to refer to the remote home of another
enterprise bean.

11.5.1.3. Declaration of EJB References in Deployment Descriptor

Although the EJB reference is an entry in the enterprise bean’s environment, the Bean Provider must
not use a env-entry element to declare it. Instead, the Bean Provider must declare all the EJB references
using the ejb-ref and ejb-local-ref elements of the deployment descriptor. This allows the ejb-jar
consumer (i.e. Application Assembler or Deployer) to discover all the EJB references used by the
enterprise bean. Deployment descriptor entries may also be used to specify injection of an EJB
reference into a bean.

Each ejb-ref or ejb-local-ref element describes the interface requirements that the referencing
enterprise bean has for the referenced enterprise bean. The ejb-ref element is used for referencing an
enterprise bean that is accessed through its remote business interface or remote home and component
interfaces. The ejb-local-ref element is used for referencing an enterprise bean that is accessed
through its local business interface, no-interface view, local home and component interfaces.

The ejb-ref element contains the description, ejb-ref-name, ejb-ref-type, home, remote, ejb-link, and
lookup-name elements.

The ejb-local-ref element contains the description, ejb-ref-name, ejb-ref-type, local-home , local, ejb-

11.5. EJB References

DRAFT Jakarta Enterprise Beans, Core Features 261

link, and lookup-name elements.

The ejb-ref-name element specifies the EJB reference name: its value is the environment entry name
used in the enterprise bean code. The ejb-ref-name must be specified.

The optional ejb-ref-type element specifies the expected type of the enterprise bean: its value must be
either Entity[2] or Session.

The home and remote or local-home and local elements specify the expected Java types of the referenced
enterprise bean’s interface(s). If the reference is to an EJB 2.1 remote client view interface, the home
element is required. Likewise, if the reference is to an EJB 2.1 local client view interface, the local-home
element is required. The remote element of the ejb-ref element refers to either the remote business
interface type or the remote component interface, depending on whether the reference is to a bean’s
EJB 3.x or EJB 2.1 remote client view. Likewise, the local element of the ejb-local-ref element refers to
either the local business interface type, bean class type or the local component interface type,
depending on whether the reference is to a bean’s EJB 3.x local business interface, no-interface view,
or EJB 2.1 local client view respectively.

The ejb-link element is used to like an EJB reference to a target bean, and is described in Application
Assembler’s Responsibilities below.

The lookup-name element specifies the JNDI name of the EJB reference’s target session bean, and is
described further in Application Assembler’s Responsibilities below.

See Sharing of Environment Entries for the name scoping rules of EJB references.

The following example illustrates the declaration of EJB references in the deployment descriptor.

11.5. EJB References

262 Jakarta Enterprise Beans, Core Features DRAFT

...
 <enterprise-beans>
 <session>
 ...
 <ejb-name>EmployeeService</ejb-name>
 <ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
 ...
 <ejb-ref>
 <description>
 This is a reference to an EJB 2.1 session
 bean that encapsulates access to employee records.
 </description>
 <ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>com.wombat.empl.EmployeeRecordHome</home>
 <remote>com.wombat.empl.EmployeeRecord</remote>
 </ejb-ref>
 <ejb-local-ref>
 <description>
 This is a reference to the local business interface
 of an EJB 3.0 session bean that provides a payroll
 service.
 </description>
 <ejb-ref-name>ejb/Payroll</ejb-ref-name>
 <local>com.aardvark.payroll.Payroll</local>
 </ejb-local-ref>
 <ejb-local-ref>
 <description>
 This is a reference to the local business interface
 of an EJB 3.0 session bean that provides a pension
 plan service.
 </description>
 <ejb-ref-name>ejb/PensionPlan</ejb-ref-name>
 <local>com.wombat.empl.PensionPlan</local>
 </ejb-local-ref>
 ...
 </session>
 ...
 </enterprise-beans>
...

11.5.2. Application Assembler’s Responsibilities

The Application Assembler can use the ejb-link element in the deployment descriptor to link an EJB
reference to a target enterprise bean within the same application.

11.5. EJB References

DRAFT Jakarta Enterprise Beans, Core Features 263

The Application Assembler specifies the link between two enterprise beans as follows:

• The Application Assembler uses the optional ejb-link element of the ejb-ref or ejb-local-ref
element of the referencing enterprise bean. The value of the ejb-link element is the name of the
target enterprise bean. (This is the bean name as defined by metadata annotation (or default) in the
bean class or in the ejb-name element of the target enterprise bean.) The target enterprise bean can
be in any ejb-jar file or .war file in the same Java EE application as the referencing application
component.

• Alternatively, to avoid the need to rename enterprise beans to have unique names within an entire
Java EE application, the Application Assembler may use either of the following two syntaxes in the
ejb-link element of the referencing application component[3].

◦ The Application Assembler specifies the module name of the ejb-jar file or .war file containing
the referenced enterprise bean and appends the ejb-name of the target bean separated by /.
The module name is the name of the module in which the enterprise bean is packaged, with no
filename extension, unless the module-name element is specified in the module’s deployment
descriptor.

◦ The Application Assembler specifies the path name of the ejb-jar file or .war file containing the
referenced enterprise bean and appends the ejb-name of the target bean separated from the
path name by #. The path name is relative to the referencing application component jar file. In
this manner, multiple beans with the same ejb-name may be uniquely identified when the
Application Assembler cannot change ejb-names.

• Rather than using ejb-link to resolve the EJB reference, the Application Assembler may use the
lookup-name element to reference the target EJB component by means of one of its JNDI names. It is
an error for both ejb-link and lookup-name to be specified within an ejb-ref or ejb-local-ref
element.

• The Application Assembler must ensure that the target enterprise bean is type-compatible with the
declared EJB reference. This means that the target enterprise bean must be of the type indicated in
the ejb-ref-type element, if present, and that the business interface, bean class, or home and
component interfaces of the target enterprise bean must be Java type-compatible with the type
declared in the EJB reference.

The following illustrates the use of an ejb-link in the deployment descriptor.

11.5. EJB References

264 Jakarta Enterprise Beans, Core Features DRAFT

...
<enterprise-beans>
 <session>
 ...
 <ejb-name>EmployeeService</ejb-name>
 <ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
 ...
 <ejb-ref>
 <ejb-ref-name>ejb/EmplRecord</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>com.wombat.empl.EmployeeRecordHome</home>
 <remote>com.wombat.empl.EmployeeRecord</remote>
 <ejb-link>EmployeeRecord</ejb-link>
 </ejb-ref>
 ...
 </session>
 ...
 <session>
 <ejb-name>EmployeeRecord</ejb-name>
 <home>com.wombat.empl.EmployeeRecordHome</home>
 <remote>com.wombat.empl.EmployeeRecord</remote>
 ...
 </session>
 ...
</enterprise-beans>
...

The Application Assembler uses the ejb-link element to indicate that the EJB reference EmplRecord
declared in the EmployeeService enterprise bean has been linked to the EmployeeRecord enterprise bean.

The following example illustrates using the ejb-link element to indicate an enterprise bean reference
to the ProductEJB enterprise bean that is in the same Java EE application unit but in a different ejb-jar
file.

11.5. EJB References

DRAFT Jakarta Enterprise Beans, Core Features 265

 <session>
 ...
 <ejb-name>OrderEJB</ejb-name>
 <ejb-class>com.wombat.orders.OrderBean</ejb-class>
 ...
 <ejb-ref>
 <ejb-ref-name>ejb/Product</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>com.acme.orders.ProductHome</home>
 <remote>com.acme.orders.Product</remote>
 <ejb-link>../products/product.jar#ProductEJB</ejb-link>
 </ejb-ref>
 ...
</session>

The following example illustrates using the ejb-link element to indicate an enterprise bean reference
to the ShoppingCart enterprise bean that is in the same Java EE application unit but in a different ejb-jar
file. The reference was originally declared in the bean’s code using an annotation. The Application
Assembler provides only the link to the bean.

...
<ejb-ref>
 <ejb-ref-name>ShoppingService/myCart</ejb-ref-name>
 <ejb-link>product/ShoppingCart</ejb-link>
</ejb-ref>
...

The same effect can be obtained with the lookup-name element instead, using an appropriate JNDI name
for the target bean.

...
<ejb-ref>
 <ejb-ref-name>ShoppingService/myCart</ejb-ref-name>
 <lookup-name>java:app/products/ShoppingCart</lookup-name>
</ejb-ref>
...

11.5.2.1. Overriding Rules

The following rules apply to how a deployment descriptor entry may override an EJB annotation:

• The relevant deployment descriptor entry is located based on the JNDI name used with the
annotation (either defaulted or provided explicitly).

11.5. EJB References

266 Jakarta Enterprise Beans, Core Features DRAFT

• The type specified in the deployment descriptor via the remote , local , remote-home , or local-home
element and any bean referenced by the ejb-link element must be assignable to the type of the
field or property or the type specified by the beanInterface element of the EJB annotation.

• The description, if specified, overrides the description element of the annotation.

• The injection target, if specified, must name exactly the annotated field or property method.

11.5.3. Deployer’s Responsibility

The Deployer is responsible for the following:

• The Deployer must ensure that all the declared EJB references are bound to the business interfaces,
no-interface views, or home interfaces of enterprise beans that exist in the operational
environment. For session beans, the Deployer may use the information provided by the Bean
Provider in the mappedName element of the EJB annotation or the mapped-name element of the
ejb-ref or ejb-local-ref deployment descriptor element in creating this binding. Access in the
Global JNDI Namespace describes the syntax for session bean portable global JNDI names. The
Deployer may also use, for example, the JNDI LinkRef mechanism to create a symbolic link to the
actual JNDI name of the target enterprise bean.

• The Deployer must ensure that the target enterprise bean is type-compatible with the types
declared for the EJB reference. This means that the target enterprise bean must be of the type
indicated by the use of the EJB annotation, by the ejb-ref-type element (if specified), and that the
business interface, no-interface view, and/or home and component interfaces of the target
enterprise bean must be Java type-compatible with the type of the injection target or the types
declared in the EJB reference.

• If an EJB annotation includes the beanName element or the ejb-ref or ejb-local-ref element includes
the ejb-link element, the Deployer should bind the enterprise bean reference to the enterprise
bean specified as the target.

• If an EJB annotation includes the lookup element or the the ejb-ref or ejb-local-ref element
includes the lookup-name element, the Deployer should bind the enterprise bean reference to the
enterprise bean specified as the target. It is an error for an EJB reference declaration to include
both an ejb-link and a lookup-name element.

The following example illustrates the use of the lookup-name element to bind an EJB reference to a
target enterprise bean in the operational environment. The reference was originally declared in the
bean’s code using an annotation. The target enterprise bean has ejb-name ShoppingCart and is deployed
in the stand-alone module products.jar.

...
<ejb-ref>
 <ejb-ref-name>ShoppingService/myCart</ejb-ref-name>
 <lookup-name>java:global/products/ShoppingCart</lookup-name>
</ejb-ref>

11.5. EJB References

DRAFT Jakarta Enterprise Beans, Core Features 267

11.5.4. Container Provider’s Responsibility

The Container Provider must provide the deployment tools that allow the Deployer to perform the
tasks described in the previous subsection. The deployment tools provided by the EJB Container
Provider must be able to process the information supplied in the ejb-ref and ejb-local-ref elements in
the deployment descriptor.

At the minimum, the tools must be able to:

• Preserve the application assembly information in annotations or in the ejb-link elements by
binding an EJB reference to the business interface, no-interface view, or the home interface of the
specified target bean.

• Inform the Deployer of any unresolved EJB references, and allow him or her to resolve an EJB
reference by binding it to a specified compatible target bean.

11.6. Web Service References
Web service references allow the Bean Provider to refer to external web services. The web service
references are special entries in the enterprise bean’s environment. The Deployer binds the web
service references to the web service classes or interfaces in the target operational environment.

The specification of web service references and their usage is defined in the Java API for XML Web
Services (JAX-WS)[a9881] and Web Services for Java EE specifications[a9879].

See Sharing of Environment Entries for the name scoping rules of web service references.

The EJB specification recommends, but does not require, that all references to web services be
organized in the service subcontext of the bean’s environment (i.e., in the java:comp/env/service JNDI
context).

11.7. Resource Manager Connection Factory References
A resource manager connection factory is an object that is used to create connections to a resource
manager. For example, an object that implements the javax.sql.DataSource interface is a resource
manager connection factory for java.sql.Connection objects that implement connections to a database
management system.

This section describes the metadata annotations and deployment descriptor elements that allow the
enterprise bean code to refer to resource factories using logical names called resource manager
connection factory references. The resource manager connection factory references are special entries
in the enterprise bean’s environment. The Deployer binds the resource manager connection factory
references to the actual resource manager connection factories that are configured in the container.
Because these resource manager connection factories allow the container to affect resource
management, the connections acquired through the resource manager connection factory references
are called managed resources (e.g., these resource manager connection factories allow the container to

11.6. Web Service References

268 Jakarta Enterprise Beans, Core Features DRAFT

implement connection pooling and automatic enlistment of the connection with a transaction).

11.7.1. Bean Provider’s Responsibilities

This subsection describes the Bean Provider’s view of locating resource factories and defines his or her
responsibilities. The first subsection describes annotations for injecting references to resource
manager connection factories; the second describes the API for accessing resource manager
connection references; and the third describes syntax for declaring the resource manager connection
references in a deployment descriptor.

11.7.1.1. Injection of Resource Manager Connection Factory References

A field or a method of an enterprise bean may be annotated with the Resource annotation. The name
and type of the factory are as described above in Annotations for Environment Entries. The
authenticationType and shareable elements of the Resource annotation may be used to control the type
of authentication desired for the resource and the shareability of connections acquired from the
factory, as described in the following sections.

The following code example illustrates how an enterprise bean uses annotations to declare resource
manager connection factory references.

//The employee database.
@Resource
javax.sql.DataSource employeeAppDB;
...
public void changePhoneNumber(...) {
 ...
 // Invoke factory to obtain a resource. The security
 // principal for the resource is not given, and
 // therefore it will be configured by the Deployer.
 java.sql.Connection con = employeeAppDB.getConnection();
 ...
}

The same resource manager can be declared using the JNDI name of an entry to which the resource
being defined will be bound.

// The customer database, looked up in the application environment.
@Resource(lookup="java:app/env/employeeAppDB")
javax.sql.DataSource employeeAppDB;

11.7.1.2. Programming Interfaces for Resource Manager Connection Factory References

The Bean Provider must use resource manager connection factory references to obtain connections to

11.7. Resource Manager Connection Factory References

DRAFT Jakarta Enterprise Beans, Core Features 269

resources as follows.

• Assign an entry in the enterprise bean’s environment to the resource manager connection factory
reference. (See Declaration of Resource Manager Connection Factory References in Deployment
Descriptor for information on how resource manager connection factory references are declared
in the deployment descriptor.)

• The EJB specification recommends, but does not require, that all resource manager connection
factory references be organized in the subcontexts of the bean’s environment, using a different
subcontext for each resource manager type. For example, all JDBC data source references might be
declared in the java:comp/env/jdbc subcontext, and all JMS connection factories in the
java:comp/env/jms subcontext. Also, all JavaMail connection factories might be declared in the
java:comp/env/mail subcontext and all URL connection factories in the java:comp/env/url

subcontext. Note that resource manager connection factory references declared via annotations
will not, by default, appear in any subcontext.

• Lookup the resource manager connection factory object in the enterprise bean’s environment
using the EJBContext lookup method or using the JNDI API.

• Invoke the appropriate method on the resource manager connection factory to obtain a connection
to the resource. The factory method is specific to the resource type. It is possible to obtain multiple
connections by calling the factory object multiple times.

The Bean Provider can control the shareability of the connections acquired from the resource manager
connection factory. By default, connections to a resource manager are shareable across other
enterprise beans in the application that use the same resource in the same transaction context. The
Bean Provider can specify that connections obtained from a resource manager connection factory
reference are not shareable by specifying the value of the shareable annotation element to false or the
value of the res-sharing-scope deployment descriptor element to be Unshareable . The sharing of
connections to a resource manager allows the container to optimize the use of connections and
enables the container’s use of local transaction optimizations.

The Bean Provider has two choices with respect to dealing with associating a principal with the
resource manager access:

• Allow the Deployer to set up principal mapping or resource manager sign-on information. In this
case, the enterprise bean code invokes a resource manager connection factory method that has no
security-related parameters.

• Sign on to the resource manager from the bean code. In this case, the enterprise bean invokes the
appropriate resource manager connection factory method that takes the sign-on information as
method parameters.

The Bean Provider uses the authenticationType annotation element or the res-auth deployment
descriptor element to indicate which of the two resource manager authentication approaches is used.

We expect that the first form (i.e., letting the Deployer set up the resource manager sign-on information)
will be the approach used by most enterprise beans.

11.7. Resource Manager Connection Factory References

270 Jakarta Enterprise Beans, Core Features DRAFT

The following code sample illustrates obtaining a JDBC connection when the EJBContext lookup method
is used.

@Resource(name="jdbc/EmployeeAppDB", type=javax.sql.DataSource)
@Stateless
public class EmployeeServiceBean implements EmployeeService {
 @Resource
 SessionContext ctx;
 public void changePhoneNumber(...) {
 ...
 // use context lookup to obtain resource manager
 // connection factory
 javax.sql.DataSource ds = (javax.sql.DataSource)
 ctx.lookup("jdbc/EmployeeAppDB");

 // Invoke factory to obtain a connection. The security
 // principal is not given, and therefore
 // it will be configured by the Deployer.
 java.sql.Connection con = ds.getConnection();
 ...
 }
}

The following code sample illustrates obtaining a JDBC connection when the JNDI APIs are used
directly.

11.7. Resource Manager Connection Factory References

DRAFT Jakarta Enterprise Beans, Core Features 271

@Resource(name="jdbc/EmployeeAppDB", type=javax.sql.DataSource)
@Stateless
public class EmployeeServiceBean implements EmployeeService {

 EJBContext ejbContext;

 public void changePhoneNumber(...) {
 ...
 // obtain the initial JNDI context
 Context initCtx = new InitialContext();

 // perform JNDI lookup to obtain resource manager
 // connection factory
 javax.sql.DataSource ds = (javax.sql.DataSource)
 initCtx.lookup("java:comp/env/jdbc/EmployeeAppDB");

 // Invoke factory to obtain a connection. The security
 // principal is not given, and therefore
 // it will be configured by the Deployer.
 java.sql.Connection con = ds.getConnection();
 ...
 }
}

11.7.1.3. Declaration of Resource Manager Connection Factory References in Deployment
Descriptor

Although a resource manager connection factory reference is an entry in the enterprise bean’s
environment, the Bean Provider must not use an env-entry element to declare it.

Instead, if metadata annotations are not used, the Bean Provider must declare all the resource
manager connection factory references in the deployment descriptor using the resource-ref elements.
This allows the ejb-jar consumer (i.e. Application Assembler or Deployer) to discover all the resource
manager connection factory references used by an enterprise bean. Deployment descriptor entries
may also be used to specify injection of a resource manager connection factor reference into a bean.

See Section "Declaration of Resource Manager Connection Factory References in Deployment
Descriptor" in the Java EE Platform specification[a9861] for the description of the resource-ref
element.

See Sharing of Environment Entries for the name scoping rules of resource manager connection
factory references.

The type declaration allows the Deployer to identify the type of the resource manager connection
factory.

11.7. Resource Manager Connection Factory References

272 Jakarta Enterprise Beans, Core Features DRAFT

Note that the indicated type is the Java type of the resource factory, not the Java type of the resource.

The following example is the declaration of resource manager connection factory references used by
the EmployeeService enterprise bean illustrated in the previous subsection.

...
<enterprise-beans>
 <session>
 ...
 <ejb-name>EmployeeService</ejb-name>
 <ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
 ...
 <resource-ref>
 <description>
 A data source for the database in which
 the EmployeeService enterprise bean will
 record a log of all transactions.
 </description>
 <res-ref-name>jdbc/EmployeeAppDB</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>
 ...
 </session>
</enterprise-beans>
...

The following example illustrates the declaration of JMS resource manager connection factory
references.

11.7. Resource Manager Connection Factory References

DRAFT Jakarta Enterprise Beans, Core Features 273

...
<enterprise-beans>
 <session>
 ...
 <resource-ref>
 <description>
 A queue connection factory used by the
 MySession enterprise bean to send
 notifications.
 </description>
 <res-ref-name>jms/qConnFactory</res-ref-name>
 <res-type>javax.jms.QueueConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Unshareable</res-sharing-scope>
 </resource-ref>
 ...
 </session>
</enterprise-beans>
...

11.7.1.4. Standard Resource Manager Connection Factory Types

The Bean Provider must use the javax.sql.DataSource resource manager connection factory type for
obtaining JDBC connections, and the javax.jms.ConnectionFactory, javax.jms.QueueConnectionFactory,
or javax.jms.TopicConnectionFactory for obtaining JMS connections.

The Bean Provider must use the javax.mail.Session resource manager connection factory type for
obtaining JavaMail connections, and the java.net.URL resource manager connection factory type for
obtaining URL connections.

It is recommended that the Bean Provider names JDBC data sources in the java:comp/env/jdbc
subcontext, and JMS connection factories in the java:comp/env/jms subcontext. It is also recommended
that the Bean Provider name all JavaMail connection factories in the java:comp/env/mail subcontext,
and all URL connection factories in the java:comp/env/url subcontext. Note that resource manager
connection factory references declared via annotations will not, by default, appear in any subcontext.

The Connector architecture[a9863] allows an enterprise bean to use the API described in this section to
obtain resource objects that provide access to additional back-end systems.

11.7.2. Deployer’s Responsibility

The Deployer uses deployment tools to bind the resource manager connection factory references to the
actual resource factories configured in the target operational environment.

The Deployer must perform the following tasks for each resource manager connection factory
reference declared in the metadata annotations or deployment descriptor:

11.7. Resource Manager Connection Factory References

274 Jakarta Enterprise Beans, Core Features DRAFT

• Bind the resource manager connection factory reference to a resource manager connection factory
that exists in the operational environment. The Deployer may use, for example, the JNDI LinkRef
mechanism to create a symbolic link to the actual JNDI name of the resource manager connection
factory. The resource manager connection factory type must be compatible with the type declared
in the source code or in the res-type element.

• Provide any additional configuration information that the resource manager needs for opening
and managing the resource. The configuration mechanism is resource-manager specific, and is
beyond the scope of this specification.

• If the value of the Resource annotation authenticationType element is AuthenticationType.CONTAINER
or the deployment descriptor res-auth element is Container, the Deployer is responsible for
configuring the sign-on information for the resource manager. This is performed in a manner
specific to the EJB container and resource manager; it is beyond the scope of this specification.

For example, if principals must be mapped from the security domain and principal realm used at the
enterprise beans application level to the security domain and principal realm of the resource manager,
the Deployer or System Administrator must define the mapping. The mapping is performed in a manner
specific to the EJB container and resource manager; it is beyond the scope of the current EJB specification.

11.7.3. Container Provider Responsibility

The EJB Container Provider is responsible for the following:

• Provide the deployment tools that allow the Deployer to perform the tasks described in the
previous subsection.

• Provide the implementation of the resource manager connection factory classes for the resource
managers that are configured with the EJB container.

• If the Bean Provider sets the authenticationType element of the Resource annotation to
AuthenticationType.APPLICATION or the res-auth deployment descriptor entry for a resource
manager connection factory reference to Application, the container must allow the bean to
perform explicit programmatic sign-on using the resource manager’s API.

• If the Bean Provider sets the shareable element of the Resource annotation to false or sets the res-
sharing-scope deployment descriptor entry for a resource manager connection factory reference to
Unshareable, the container must not attempt to share the connections obtained from the resource
manager connection factory reference[4]. If the Bean Provider sets the res-sharing-scope of a
resource manager connection factory reference to Shareable or does not specify res-sharing-scope ,
the container must share the connections obtained from the resource manager connection factory
according to the requirements defined in [a9861].

• The container must provide tools that allow the Deployer to set up resource manager sign-on
information for the resource manager references whose annotation element authenticationType is
set to AuthenticationType.CONTAINER or whose res-auth deployment descriptor element element is
set to Container. The minimum requirement is that the Deployer must be able to specify the
user/password information for each resource manager connection factory reference declared by
the enterprise bean, and the container must be able to use the user/password combination for user

11.7. Resource Manager Connection Factory References

DRAFT Jakarta Enterprise Beans, Core Features 275

authentication when obtaining a connection to the resource by invoking the resource manager
connection factory.

Although not required by the EJB specification, we expect that containers will support some form of a
single sign-on mechanism that spans the application server and the resource managers. The container
will allow the Deployer to set up the resource managers such that the EJB caller principal can be
propagated (directly or through principal mapping) to a resource manager, if required by the application.

While not required by the EJB specification, most EJB Container Providers also provide the following
features:

• A tool to allow the System Administrator to add, remove, and configure a resource manager for the
EJB server.

• A mechanism to pool connections to the resources for the enterprise beans and otherwise manage
the use of resources by the container. The pooling must be transparent to the enterprise beans.

11.7.4. System Administrator’s Responsibility

The System Administrator is typically responsible for the following:

• Add, remove, and configure resource managers in the EJB server environment.

In some scenarios, these tasks can be performed by the Deployer.

11.8. Resource Environment References
This section describes the programming and deployment descriptor interfaces that allow the Bean
Provider to refer to administered objects that are associated with resources (e.g., a Connector CCI
InteractionSpec instance) by using "logical" names called resource environment references. Resource
environment references are special entries in the enterprise bean’s environment. The Deployer binds
the resource environment references to administered objects in the target operational environment.

11.8.1. Bean Provider’s Responsibilities

This subsection describes the Bean Provider’s view and responsibilities with respect to resource
environment references.

11.8.1.1. Injection of Resource Environment References

A field or a method of a bean may be annotated with the Resource annotation to request injection of a
resource environment reference. The name and type of the resource environment reference are as
described in Annotations for Environment Entries. The authenticationType and shareable elements of
the Resource annotation must not be specified; resource environment entries are not shareable and do
not require authentication. The use of the Resource annotation to declare a resource environment
reference differs from the use of the Resource annotation to declare simple environment references
only in that the type of a resource environment reference is not one of the Java language types used for

11.8. Resource Environment References

276 Jakarta Enterprise Beans, Core Features DRAFT

simple environment references.

11.8.1.2. Resource Environment Reference Programming Interfaces

The Bean Provider must use resource environment references to locate administered objects that are
associated with resources, as follows:

• Assign an entry in the enterprise bean’s environment to the reference. (See Declaration of Resource
Environment References in Deployment Descriptor for information on how resource environment
references are declared in the deployment descriptor.)

• The EJB specification recommends, but does not require, that all resource environment references
be organized in the appropriate subcontext of the bean’s environment for the resource type. Note
that the resource environment references declared via annotations will not, by default, appear in
any subcontext.

• Look up the administered object in the enterprise bean’s environment using the EJBContext lookup
method or the JNDI API.

11.8.1.3. Declaration of Resource Environment References in Deployment Descriptor

Although the resource environment reference is an entry in the enterprise bean’s environment, the
Bean Provider must not use a env-entry element to declare it. Instead, the Bean Provider must declare
all references to administered objects associated with resources using either annotations in the bean’s
source code or the resource-env-ref elements of the deployment descriptor. This allows the ejb-jar
consumer to discover all the resource environment references used by the enterprise bean.
Deployment descriptor entries may also be used to specify injection of a resource environment
reference into a bean.

See Section "Declaration of Resource Environment References in Deployment Descriptor" in the Java
EE Platform specification[a9861] for the description of the resource-env-ref element.

See Sharing of Environment Entries for the name scoping rules of resource environment references.

11.8.2. Deployer’s Responsibility

The Deployer is responsible for the following:

• The Deployer must ensure that all the declared resource environment references are bound to
administered objects that exist in the operational environment. The Deployer may use, for
example, the JNDI LinkRef mechanism to create a symbolic link to the actual JNDI name of the
target object.

• The Deployer must ensure that the target object is type-compatible with the type declared for the
resource environment reference. This means that the target object must be of the type indicated in
the Resource annotation or the resource-env-ref-type element.

11.8. Resource Environment References

DRAFT Jakarta Enterprise Beans, Core Features 277

11.8.3. Container Provider’s Responsibility

The Container Provider must provide the deployment tools that allow the Deployer to perform the
tasks described in the previous subsection. The deployment tools provided by the EJB Container
Provider must be able to process the information supplied in the class file annotations and resource-
env-ref elements in the deployment descriptor.

At the minimum, the tools must be able to inform the Deployer of any unresolved resource
environment references, and allow him or her to resolve a resource environment reference by binding
it to a specified compatible target object in the environment.

11.9. Message Destination References
This section describes the programming and deployment descriptor interfaces that allow the Bean
Provider to refer to message destination objects by using "logical" names called message destination
references. Message destination references are special entries in the enterprise bean’s environment.
The Deployer binds the message destination references to administered message destinations in the
target operational environment.

11.9.1. Bean Provider’s Responsibilities

This subsection describes the Bean Provider’s view and responsibilities with respect to message
destination references.

11.9.1.1. Injection of Message Destination References

A field or a method of a bean may be annotated with the Resource annotation to request injection of a
message destination reference. The name and type of the resource environment reference are as
described in Annotations for Environment Entries. The authenticationType and shareable elements of
the Resource annotation must not be specified.

Note that when using the Resource annotation to declare a message destination reference it is not
possible to link the reference to other references to the same message destination, or to specify
whether the destination is used to produce or consume messages. The deployment descriptor entries
described in Declaration of Message Destination References in Deployment Descriptor provide a way to
associate multiple message destination references with a single message destination and to specify
whether each message destination reference is used to produce, consume, or both produce and
consume messsages, so that the entire message flow of an application may be specified. The
Application Assembler may use these message destination links to link together message destination
references that have been declared using the Resource annotation. A message destination reference
declared via the Resource annotation is assumed to be used to both produce and consume messages;
this default may be overridden using a deployment descriptor entry.

The following example illustrates how an enterprise bean uses the Resource annotation to request
injection of a message destination reference.

11.9. Message Destination References

278 Jakarta Enterprise Beans, Core Features DRAFT

@Resource
javax.jms.Queue stockQueue;

11.9.1.2. Message Destination Reference Programming Interfaces

The Bean Provider uses message destination references to locate message destinations, as follows.

• Assign an entry in the enterprise bean’s environment to the reference. (See Declaration of Message
Destination References in Deployment Descriptor for information on how message destination
references are declared in the deployment descriptor.)

• The EJB specification recommends, but does not require, that all message destination references be
organized in the appropriate subcontext of the bean’s environment for the messaging resource
type (e.g. in the java:comp/env/jms JNDI context for JMS Destinations). Note that message destination
references declared via annotations will not, by default, appear in any subcontext.

• Look up the destination in the enterprise bean’s environment using the EJBContext lookup method
or the JNDI APIs.

The following example illustrates how an enterprise bean uses a message destination reference to
locate a JMS Destination.

@Resource(name="jms/StockQueue", type=javax.jms.Queue)
@Stateless
public class StockServiceBean implements StockService {

 @Resource
 SessionContext ctx;

 public void processStockInfo(...) {
 ...
 // Look up the JMS StockQueue in the environment.
 Object result = ctx.lookup("jms/StockQueue");

 // Convert the result to the proper type.
 javax.jms.Queue queue = (javax.jms.Queue)result;
 }
}

In the example, the Bean Provider of the StockServiceBean enterprise bean has assigned the
environment entry jms/StockQueue as the message destination reference name to refer to a JMS queue.

If the JNDI APIs were used directly, the example would be as follows.

11.9. Message Destination References

DRAFT Jakarta Enterprise Beans, Core Features 279

@Resource(name="jms/StockQueue", type=javax.jms.Queue)
@Stateless
public class StockServiceBean implements StockService {

 public void processStockInfo(...) {
 ...
 // Obtain the default initial JNDI context.
 Context initCtx = new InitialContext();

 // Look up the JMS StockQueue in the environment.
 Object result = initCtx.lookup(
 "java:comp/env/jms/StockQueue");

 // Convert the result to the proper type.
 javax.jms.Queue queue = (javax.jms.Queue)result;
 ...
 }
}

11.9.1.3. Declaration of Message Destination References in Deployment Descriptor

Although the message destination reference is an entry in the enterprise bean’s environment, the Bean
Provider must not use a env-entry element to declare it. Instead, the Bean Provider should declare all
references to message destinations using either the Resource annotation in the bean’s code or the the
message-destination-ref elements of the deployment descriptor. This allows the ejb-jar consumer to
discover all the message destination references used by the enterprise bean. Deployment descriptor
entries may also be used to specify injection of a message destination reference into a bean.

Each message-destination-ref element describes the requirements that the referencing enterprise bean
has for the referenced destination. The message-destination-ref element contains optional description,
message-destination-type, and message-destination-usage elements, and the mandatory message-

destination-ref-name element.

The message-destination-ref-name element specifies the message destination reference name: its value
is the environment entry name used in the enterprise bean code. The name of the message destination
reference is relative to the java:comp/env context (e.g., the name should be jms/StockQueue rather than
java:comp/env/jms/StockQueue).

The message-destination-type element specifies the expected type of the referenced destination. For
example, in the case of a JMS Destination, its value might be javax.jms.Queue. The message-destination-
type element is optional if an injection target is specified for the message destination reference; in this
case the message-destination-type defaults to the type of the injection target.

The message-destination-usage element specifies whether messages are consumed from the message
destination, produced for the destination, or both. If the message-destination-usage element is not

11.9. Message Destination References

280 Jakarta Enterprise Beans, Core Features DRAFT

specified, messages are assumed to be both consumed and produced.

See Sharing of Environment Entries for the name scoping rules of message destination references.

The following example illustrates the declaration of message destination references in the deployment
descriptor.

...
<message-destination-ref>
 <description>
 This is a reference to a JMS queue used in processing Stock info
 </description>
 <message-destination-ref-name>
 jms/StockInfo
 </message-destination-ref-name>
 <message-destination-type>
 javax.jms.Queue
 </message-destination-type>
 <message-destination-usage>
 Produces
 </message-destination-usage>
</message-destination-ref>
...

11.9.2. Application Assembler’s Responsibilities

By means of linking message consumers and producers to one or more common logical destinations
specified in the deployment descriptor, the Application Assembler can specify the flow of messages
within an application. The Application Assembler uses the message-destination element, the message-
destination-link element of the message-destination-ref element, and the message-destination-link
element of the message-driven element to link message destination references to a common logical
destination.

The Application Assembler specifies the link between message consumers and producers as follows:

• The Application Assembler uses the message-destination element to specify a logical message
destination within the application. The message-destination element defines a message-destination-
name , which is used for the purpose of linking.

• The Application Assembler uses the message-destination-link element of the message-destination-
ref element of an enterprise bean that produces messages to link it to the target destination. The
value of the message-destination-link element is the name of the target destination, as defined in
the message-destination-name element of the message-destination element. The message-destination
element can be in any module in the same Java EE application as the referencing component. The
Application Assembler uses the message-destination-usage element of the message-destination-ref
element to indicate that the referencing enterprise bean produces messages to the referenced

11.9. Message Destination References

DRAFT Jakarta Enterprise Beans, Core Features 281

destination.

• If the consumer of messages from the common destination is a message-driven bean, the
Application Assembler uses the message-destination-link element of the message-driven element to
reference the logical destination. If the Application Assembler links a message-driven bean to its
source destination, he or she should use the message-destination-type element of the message-
driven element to specify the expected destination type.

• If an enterprise bean is otherwise a message consumer, the Application Assembler uses the
message-destination-link element of the message-destination-ref element of the enterprise bean
that consumes messages to link to the common destination. In the latter case, the Application
Assembler uses the message-destination-usage element of the message-destination-ref element to
indicate that the enterprise bean consumes messages from the referenced destination.

• To avoid the need to rename message destinations to have unique names within an entire Java EE
application, the Application Assembler may use the following syntax in the message-destination-
link element of the referencing application component. The Application Assembler specifies the
path name of the ejb-jar file containing the referenced message destination and appends the
message-destination-name of the target destination separated from the path name by #. The path
name is relative to the referencing application component jar file. In this manner, multiple
destinations with the same message-destination-name may be uniquely identified.

• When linking message destinations, the Application Assembler must ensure that the consumers
and producers for the destination require a message destination of the same or compatible type, as
determined by the messaging system.

The following example illustrates the use of message destination linking in the deployment descriptor.

...
<enterprise-beans>
 <session>
 ...
 <ejb-name>EmployeeService</ejb-name>
 <ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
 ...
 <message-destination-ref>
 <message-destination-ref-name>
 jms/EmployeeReimbursements
 </message-destination-ref-name>
 <message-destination-type>
 javax.jms.Queue
 </message-destination-type>
 <message-destination-usage>
 Produces
 </message-destination-usage>
 <message-destination-link>
 ExpenseProcessingQueue
 </message-destination-link>

11.9. Message Destination References

282 Jakarta Enterprise Beans, Core Features DRAFT

 </message-destination-ref>
 </session>
 ...
 <message-driven>
 <ejb-name>ExpenseProcessing</ejb-name>
 <ejb-class>com.wombat.empl.ExpenseProcessingBean</ejb-class>
 <messaging-type>javax.jms.MessageListener</messaging-type>
 ...
 <message-destination-type>
 javax.jms.Queue
 </message-destination-type>
 <message-destination-link>
 ExpenseProcessingQueue
 </message-destination-link>
 ...
 </message-driven>
 ...
</enterprise-beans>
...
<assembly-descriptor>
 ...
 <message-destination>
 <message-destination-name>
 ExpenseProcessingQueue
 </message-destination-name>
 </message-destination>
 ...
</assembly-descriptor>

The Application Assembler uses the message-destination-link element to indicate that the message
destination reference EmployeeReimbursement declared in the EmployeeService enterprise bean is linked
to the ExpenseProcessing message-driven bean by means of the common destination
ExpenseProcessingQueue.

The following example illustrates using the message-destination-link element to indicate an enterprise
bean reference to the ExpenseProcessingQueue that is in the same Java EE application unit but in a
different ejb-jar file.

11.9. Message Destination References

DRAFT Jakarta Enterprise Beans, Core Features 283

<session>
 ...
 <ejb-name>EmployeeService</ejb-name>
 <ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>
 ...
 <message-destination-ref>
 <message-destination-ref-name>
 jms/EmployeeReimbursements
 </message-destination-ref-name>
 <message-destination-type>
 javax.jms.Queue
 </message-destination-type>
 <message-destination-usage>
 Produces
 </message-destination-usage>
 <message-destination-link>
 finance.jar#ExpenseProcessingQueue
 </message-destination-link>
 </message-destination-ref>
</session>

11.9.3. Deployer’s Responsibility

The Deployer is responsible for the following:

• The Deployer must ensure that all the declared message destination references are bound to
destination objects that exist in the operational environment. The Deployer may use, for example,
the JNDI LinkRef mechanism to create a symbolic link to the actual JNDI name of the target object.

• The Deployer must ensure that the target object is type-compatible with the type declared for the
message destination reference.

• The Deployer must observe the message destination links specified by the Application Assembler.

11.9.4. Container Provider’s Responsibility

The Container Provider must provide the deployment tools that allow the Deployer to perform the
tasks described in the previous subsection. The deployment tools provided by the EJB Container
Provider must be able to process the information supplied in the message-destination-ref and message-
destination-link elements in the deployment descriptor.

The tools must be able to inform the Deployer of the message flow between consumers and producers
sharing common message destinations. The tools must also be able to inform the Deployer of any
unresolved message destination references, and allow him or her to resolve a message destination
reference by binding it to a specified compatible target object in the environment.

11.9. Message Destination References

284 Jakarta Enterprise Beans, Core Features DRAFT

11.10. Persistence Unit References
This section describes the metadata annotations and deployment descriptor elements that allow the
enterprise bean code to refer to the entity manager factory for a persistence unit using a logical name
called a persistence unit reference. Persistence unit references are special entries in the enterprise
bean’s environment. The Deployer binds the persistence unit references to entity manager factories
that are configured in accordance with the persistence.xml specification for the persistence unit, as
described in the Java Persistence API specification[a9851].

11.10.1. Bean Provider’s Responsibilities

This subsection describes the Bean Provider’s view of locating the entity manager factory for a
persistence unit and defines his or her responsibilities. The first subsection describes annotations for
injecting references to an entity manager factory for a persistence unit; the second describes the API
for accessing an entity manager factory using a persistence unit reference; and the third describes
syntax for declaring persistence unit references in a deployment descriptor.

11.10.1.1. Injection of Persistence Unit References

A field or a method of an enterprise bean may be annotated with the PersistenceUnit annotation. The
name element specifies the name under which the entity manager factory for the referenced persistence
unit may be located in the JNDI naming context. The optional unitName element specifies the name of
the persistence unit as declared in the persistence.xml file that defines the persistence unit.

The following code example illustrates how an enterprise bean uses annotations to declare persistence
unit references.

@PersistenceUnit
EntityManagerFactory emf;

@PersistenceUnit(unitName="InventoryManagement")
EntityManagerFactory inventoryEMF;

11.10.1.2. Programming Interfaces for Persistence Unit References

The Bean Provider must use persistence unit references to obtain references to entity manager
factories as follows:

• Assign an entry in the enterprise bean’s environment to the persistence unit reference. (See
Declaration of Persistence Unit References in Deployment Descriptor for information on how
persistence unit references are declared in the deployment descriptor.)

• The EJB specification recommends, but does not require, that all persistence unit references be
organized in the java:comp/env/persistence subcontexts of the bean’s environment.

• Lookup the entity manager factory for the persistence unit in the enterprise bean’s environment

11.10. Persistence Unit References

DRAFT Jakarta Enterprise Beans, Core Features 285

using the EJBContext lookup method or using the JNDI API.

The following code sample illustrates obtaining an entity manager factory when the EJBContext lookup
method is used.

@PersistenceUnit(name="persistence/InventoryAppDB")
@Stateless
public class InventoryManagerBean implements InventoryManager {

 @Resource
 SessionContext ctx;

 public void updateInventory(...) {
 ...
 // use context lookup to obtain entity manager factory
 EntityManagerFactory emf = (EntityManagerFactory)
 ctx.lookup("persistence/InventoryAppDB");

 // use factory to obtain application-managed entity manager
 EntityManager em = emf.createEntityManager();
 ...
 }
}

The following code sample illustrates obtaining an entity manager factory when the JNDI APIs are used
directly.

11.10. Persistence Unit References

286 Jakarta Enterprise Beans, Core Features DRAFT

@PersistenceUnit(name="persistence/InventoryAppDB")
@Stateless
public class InventoryManagerBean implements InventoryManager {

 EJBContext ejbContext;
 ...
 public void updateInventory(...) {
 ...
 // obtain the initial JNDI context
 Context initCtx = new InitialContext();

 // perform JNDI lookup to obtain entity manager factory
 EntityManagerFactory emf = (EntityManagerFactory)
 initCtx.lookup("java:comp/env/persistence/InventoryAppDB");

 // use factory to obtain application-managed entity manager
 EntityManager em = emf.createEntityManager();
 ...
 }
}

11.10.1.3. Declaration of Persistence Unit References in Deployment Descriptor

Although a persistence unit reference is an entry in the enterprise bean’s environment, the Bean
Provider must not use an env-entry element to declare it.

Instead, if metadata annotations are not used, the Bean Provider must declare all the persistence unit
references in the deployment descriptor using the persistence-unit-ref elements. This allows the ejb-
jar consumer (i.e. Application Assembler or Deployer) to discover all the persistence unit references
used by an enterprise bean. Deployment descriptor entries may also be used to specify injection of a
persistence unit reference into a bean.

Each persistence-unit-ref element describes a single entity manager factory reference for the
persistence unit. The persistence-unit-ref element consists of the optional description and
persistence-unit-name elements, and the mandatory persistence-unit-ref-name element.

The persistence-unit-ref-name element contains the name of the environment entry used in the
enterprise bean’s code. The name of the environment entry is relative to the java:comp/env context
(e.g., the name should be persistence/InventoryAppDB rather than
java:comp/env/persistence/InventoryAppDB). The optional persistence-unit-name element is the name of
the persistence unit, as specified in the persistence.xml file for the persistence unit.

The following example is the declaration of a persistence unit reference used by the InventoryManager
enterprise bean illustrated in the previous subsection.

11.10. Persistence Unit References

DRAFT Jakarta Enterprise Beans, Core Features 287

...
<enterprise-beans>
 <session>
 ...
 <ejb-name>InventoryManagerBean</ejb-name>
 <ejb-class>
 com.wombat.empl.InventoryManagerBean
 </ejb-class>
 ...
 <persistence-unit-ref>
 <description>
 Persistence unit for the inventory management
 application.
 </description>
 <persistence-unit-ref-name>
 persistence/InventoryAppDB
 </persistence-unit-ref-name>
 <persistence-unit-name>
 InventoryManagement
 </persistence-unit-name>
 </persistence-unit-ref>
 ...
 </session>
</enterprise-beans>
...

11.10.2. Application Assembler’s Responsibilities

The Application Assembler can use the persistence-unit-name element in the deployment descriptor to
specify a reference to a persistence unit. The Application Assembler (or Bean Provider) may use the
following syntax in the persistence-unit-name element of the referencing application component to
avoid the need to rename persistence units to have unique names within a Java EE application. The
Application Assembler specifies the path name of the root of the referenced persistence unit and
appends the name of the persistence unit separated from the path name by #. The path name is relative
to the referencing application component jar file. In this manner, multiple persistence units with the
same persistence unit name may be uniquely identified when persistence unit names cannot be
changed.

For example,

11.10. Persistence Unit References

288 Jakarta Enterprise Beans, Core Features DRAFT

...
<enterprise-beans>
 <session>
 ...
 <ejb-name>InventoryManagerBean</ejb-name>
 <ejb-class>
 com.wombat.empl.InventoryManagerBean
 </ejb-class>
 ...
 <persistence-unit-ref>
 <description>
 Persistence unit for the inventory management
 application.
 </description>
 <persistence-unit-ref-name>
 persistence/InventoryAppDB
 </persistence-unit-ref-name>
 <persistence-unit-name>
 ../lib/inventory.jar#InventoryManagement
 </persistence-unit-name>
 </persistence-unit-ref>
 ...
 </session>
</enterprise-beans>
...

The Application Assembler uses the persistence-unit-name element to link the persistence unit name
InventoryManagement declared in the InventoryManagerBean to the persistence unit named
InventoryManagement defined in inventory.jar.

11.10.2.1. Overriding Rules

The following rules apply to how a deployment descriptor entry may override a PersistenceUnit
annotation:

The relevant deployment descriptor entry is located based on the JNDI name used with the annotation
(either defaulted or provided explicitly).

The persistence-unit-name overrides the unitName element of the annotation. The Application
Assembler or Deployer should exercise caution in changing this value, if specified, as doing so is likely
to break the application.

The injection target, if specified, must name exactly the annotated field or property method.

11.10. Persistence Unit References

DRAFT Jakarta Enterprise Beans, Core Features 289

11.10.3. Deployer’s Responsibility

The Deployer uses deployment tools to bind a persistence unit reference to the actual entity manager
factory configured for the persistence in the target operational environment.

The Deployer must perform the following tasks for each persistence unit reference declared in the
metadata annotations or deployment descriptor:

• Bind the persistence unit reference to an entity manager factory configured for the persistence unit
that exists in the operational environment. The Deployer may use, for example, the JNDI LinkRef
mechanism to create a symbolic link to the actual JNDI name of the entity manager factory.

• If the persistence unit name is specified, the Deployer should bind the persistence unit reference to
the entity manager factory for the persistence unit specified as the target.

• Provide any additional configuration information that the entity manager factory needs for
managing the persistence unit, as described in [a9851].

11.10.4. Container Provider Responsibility

The EJB Container Provider is responsible for the following:

• Provide the deployment tools that allow the Deployer to perform the tasks described in the
previous subsection.

• Provide the implementation of the entity manager factory classes for the persistence units that are
configured with the EJB container. The implementation of the entity manager factory classes may
be provided by the container directly or by the container in conjunction with a third-party
persistence provider, as described in [a9851].

11.10.5. System Administrator’s Responsibility

The System Administrator is typically responsible for the following:

• Add, remove, and configure entity manager factories in the EJB server environment.

In some scenarios, these tasks can be performed by the Deployer.

11.11. Persistence Context References
This section describes the metadata annotations and deployment descriptor elements that allow the
enterprise bean code to refer to a container-managed entity manager of a specified persistence context
type using a logical name called a persistence context reference. Persistence context references are
special entries in the enterprise bean’s environment. The Deployer binds the persistence context
references to container-managed entity managers for persistence contexts of the specified type and
configured in accordance with their persistence unit, as described in the Java Persistence API
specification[a9851].

11.11. Persistence Context References

290 Jakarta Enterprise Beans, Core Features DRAFT

11.11.1. Bean Provider’s Responsibilities

This subsection describes the Bean Provider’s view of locating container-managed entity managers
and defines his or her responsibilities. The first subsection describes annotations for injecting
references to container-managed entity managers; the second describes the API for accessing
references to container-managed entity managers; and the third describes syntax for declaring these
references in a deployment descriptor.

11.11.1.1. Injection of Persistence Context References

A field or a method of an enterprise bean may be annotated with the PersistenceContext annotation.
The name element specifies the name under which a container-managed entity manager for the
referenced persistence unit may be located in the JNDI naming context. The optional unitName element
specifies the name of the persistence unit as declared in the persistence.xml file that defines the
persistence unit. The optional type element specifies whether a transaction-scoped or extended
persistence context is to be used. If the type is not specified, a transaction-scoped persistence context
will be used. References to container-managed entity managers with extended persistence contexts
can only be injected into stateful session beans. The optional properties element specifies
configuration properties to be passed to the persistence provider when the entity manager is created.

The following code example illustrates how an enterprise bean uses annotations to declare persistence
context references.

@PersistenceContext(type=EXTENDED)
EntityManager em;

11.11.1.2. Programming Interfaces for Persistence Context References

The Bean Provider must use persistence context references to obtain references to a container-
managed entity manager configured for a persistence unit as follows:

• Assign an entry in the enterprise bean’s environment to the persistence context reference. (See
Declaration of Persistence Context References in Deployment Descriptor for information on how
persistence context references are declared in the deployment descriptor.)

• The EJB specification recommends, but does not require, that all persistence context references be
organized in the java:comp/env/persistence subcontexts of the bean’s environment.

• Lookup the container-managed entity manager for the persistence unit in the enterprise bean’s
environment using the EJBContext lookup method or using the JNDI API.

The following code sample illustrates obtaining an entity manager for a persistence context when the
EJBContext lookup method is used.

11.11. Persistence Context References

DRAFT Jakarta Enterprise Beans, Core Features 291

@PersistenceContext(name="persistence/InventoryAppMgr")
@Stateless
public class InventoryManagerBean implements InventoryManager {

 @Resource
 SessionContext ctx;

 public void updateInventory(...) {
 ...
 // use context lookup to obtain container-managed entity manager
 EntityManager em = (EntityManager)
 ctx.lookup("persistence/InventoryAppMgr");
 ...
 }
}

The following code sample illustrates obtaining an entity manager when the JNDI APIs are used
directly.

@PersistenceContext(name="persistence/InventoryAppMgr")
@Stateless
public class InventoryManagerBean implements InventoryManager {

 EJBContext ejbContext;

 public void updateInventory(...) {
 ...
 // obtain the initial JNDI context
 Context initCtx = new InitialContext();

 // perform JNDI lookup to obtain container-managed entity manager
 EntityManager em = (EntityManager)
 initCtx.lookup("java:comp/env/persistence/InventoryAppMgr");
 ...
 }
}

11.11.1.3. Declaration of Persistence Context References in Deployment Descriptor

Although a persistence context reference is an entry in the enterprise bean’s environment, the Bean
Provider must not use an env-entry element to declare it.

Instead, if metadata annotations are not used, the Bean Provider must declare all the persistence
context references in the deployment descriptor using the persistence-context-ref elements. This
allows the ejb-jar consumer (i.e. Application Assembler or Deployer) to discover all the persistence

11.11. Persistence Context References

292 Jakarta Enterprise Beans, Core Features DRAFT

context references used by an enterprise bean. Deployment descriptor entries may also be used to
specify injection of a persistence context reference into a bean.

Each persistence-context-ref element describes a single container-managed entity manager reference.
The persistence-context-ref element consists of the optional description, persistence-unit-name,
persistence-context-type, persistence-context-synchronization, and persistence-property elements,
and the mandatory persistence-context-ref-name element.

The persistence-context-ref-name element contains the name of the environment entry used in the
enterprise bean’s code. The name of the environment entry is relative to the java:comp/env context
(e.g., the name should be persistence/InventoryAppMgr rather than
java:comp/env/persistence/InventoryAppMgr). The persistence-unit-name element is the name of the
persistence unit, as specified in the persistence.xml file for the persistence unit. The persistence-
context-type element specifies whether a transaction-scoped or extended persistence context is to be
used. Its value is either Transaction or Extended. If the persistence context type is not specified, a
transaction-scoped persistence context will be used. The optional persistence-context-synchronization
element specifies whether the persistence context is automatically synchronized with the current
transaction. Its value is either Synchronized or Unsynchronized. If the persistence context
synchronization is not specified, the persistence context will be automatically synchronized. The
optional persistence-property elements specify configuration properties that are passed to the
persistence provider when the entity manager is created.

The following example is the declaration of a persistence context reference used by the
InventoryManager enterprise bean illustrated in the previous subsection.

11.11. Persistence Context References

DRAFT Jakarta Enterprise Beans, Core Features 293

...
<enterprise-beans>
 <session>
 ...
 <ejb-name>InventoryManagerBean</ejb-name>
 <ejb-class>
 com.wombat.empl.InventoryManagerBean
 </ejb-class>
 ...
 <persistence-context-ref>
 <description>
 Persistence context for the inventory management
 application.
 </description>
 <persistence-context-ref-name>
 persistence/InventoryAppMgr
 </persistence-context-ref-name>
 <persistence-unit-name>
 InventoryManagement
 </persistence-unit-name>
 </persistence-context-ref>
 ...
 </session>
</enterprise-beans>
...

11.11.2. Application Assembler’s Responsibilities

The Application Assembler can use the persistence-unit-name element in the deployment descriptor to
specify a reference to a persistence unit using the syntax described in Application Assembler’s
Responsibilities. In this manner, multiple persistence units with the same persistence unit name may
be uniquely identified when persistence unit names cannot be changed.

For example,

11.11. Persistence Context References

294 Jakarta Enterprise Beans, Core Features DRAFT

...
<enterprise-beans>
 <session>
 ...
 <ejb-name>InventoryManagerBean</ejb-name>
 <ejb-class>
 com.wombat.empl.InventoryManagerBean
 </ejb-class>
 ...
 <persistence-context-ref>
 <description>
 Persistence context for the inventory management
 application.
 </description>
 <persistence-context-ref-name>
 persistence/InventoryAppMgr
 </persistence-context-ref-name>
 <persistence-unit-name>
 ../lib/inventory.jar#InventoryManagement
 </persistence-unit-name>
 </persistence-context-ref>
 ...
 </session>
</enterprise-beans>
...

The Application Assembler uses the persistence-unit-name element to link the persistence unit name
InventoryManagement declared in the InventoryManagerBean to the persistence unit named
InventoryManagement defined in inventory.jar.

11.11.2.1. Overriding Rules

The following rules apply to how a deployment descriptor entry may override a PersistenceContext
annotation:

• The relevant deployment descriptor entry is located based on the JNDI name used with the
annotation (either defaulted or provided explicitly).

• The persistence-unit-name overrides the unitName element of the annotation. The Application
Assembler or Deployer should exercise caution in changing this value, if specified, as doing so is
likely to break the application.

• The persistence-context-type, if specified, overrides the type element of the annotation. In general,
the Application Assembler or Deployer should never change the value of this element, as doing so
is likely to break the application.

• The persistence-context-synchronization, if specified, overrides the synchronization element of the

11.11. Persistence Context References

DRAFT Jakarta Enterprise Beans, Core Features 295

annotation. In general, the Application Assembler or Deployer should never change the value of
this element, as doing so is likely to break the application.

• Any persistence-property elements are added to those specified by the PersistenceContext

annotation. If the name of a specified property is the same as one specified by the
PersistenceContext annotation, the value specified in the annotation is overridden.

• The injection target, if specified, must name exactly the annotated field or property method.

11.11.3. Deployer’s Responsibility

The Deployer uses deployment tools to bind a persistence context reference to the container-managed
entity manager for the persistence context of the specified type and configured for the persistence unit
in the target operational environment.

The Deployer must perform the following tasks for each persistence context reference declared in the
metadata annotations or deployment descriptor:

• Bind the persistence context reference to a container-managed entity manager for a persistence
context of the specified type and configured for the persistence unit as specified in the
persistence.xml file for the persistence unit that exists in the operational environment. The
Deployer may use, for example, the JNDI LinkRef mechanism to create a symbolic link to the actual
JNDI name of the entity manager.

• If the persistence unit name is specified, the Deployer should bind the persistence context
reference to an entity manager for the persistence unit specified as the target.

• Provide any additional configuration information that the entity manager factory needs for
creating such an entity manager and for managing the persistence unit, as described in [a9851].

11.11.4. Container Provider Responsibility

The EJB Container Provider is responsible for the following:

• Provide the deployment tools that allow the Deployer to perform the tasks described in the
previous subsection.

• Provide the implementation of the entity manager classes for the persistence units that are
configured with the EJB container. This implementation may be provided by the container
directory or by the container in conjunction with a third-party persistence provider, as described
in [a9851].

11.11.5. System Administrator’s Responsibility

The System Administrator is typically responsible for the following:

• Add, remove, and configure entity manager factories in the EJB server environment.

In some scenarios, these tasks can be performed by the Deployer.

11.11. Persistence Context References

296 Jakarta Enterprise Beans, Core Features DRAFT

11.12. UserTransaction Interface
The container must make the UserTransaction interface available to the enterprise beans that are
allowed to use this interface (only session and message-driven beans with bean-managed transaction
demarcation are allowed to use this interface) either through injection using the Resource annotation
or in JNDI under the name java:comp/UserTransaction, in addition to through the EJBContext interface.
The authenticationType and shareable elements of the Resource annotation must not be specified.

The container must not make the UserTransaction interface available to the enterprise beans that are
not allowed to use this interface. The container should throw javax.naming.NameNotFoundException if an
instance of an enterprise bean that is not allowed to use the UserTransaction interface attempts to look
up the interface in JNDI using the JNDI APIs.

The following example illustrates how an enterprise bean acquires and uses a UserTransaction object
via injection.

@Resource
UserTransaction tx;
...
public void updateData(...) {
 ...
 // Start a transaction.
 tx.begin();
 ...
 // Perform transactional operations on data.
 ...
 // Commit the transaction.
 tx.commit();
 ...
}

The following code example

11.12. UserTransaction Interface

DRAFT Jakarta Enterprise Beans, Core Features 297

public MySessionBean implements SessionBean {
 ...
 public someMethod() {
 ...
 Context initCtx = new InitialContext();
 UserTransaction utx = (UserTransaction)initCtx.lookup(
 "java:comp/UserTransaction");
 utx.begin();
 ...
 utx.commit();
 }
 ...
}

is functionally equivalent to

public MySessionBean implements SessionBean {
 ...
 SessionContext ctx;
 ...
 public someMethod() {
 UserTransaction utx = ctx.getUserTransaction();
 utx.begin();
 ...
 utx.commit();
 }
 ...
}

A UserTransaction object reference may also be declared in a deployment descriptor in the same way as
a resource environment reference. Such a deployment descriptor entry may be used to specify
injection of a UserTransaction object.

11.12.1. Bean Provider’s Responsibility

The Bean Provider is responsible for requesting injection of a UserTransaction object using a Resource
annotation or for using the defined name to lookup the UserTransaction object.

11.12.2. Container Provider’s Responsibility

The Container Provider is responsible for providing an appropriate UserTransaction object as required
by this specification.

11.12. UserTransaction Interface

298 Jakarta Enterprise Beans, Core Features DRAFT

11.13. ORB References
Enterprise beans that need to make use of the CORBA ORB to perform certain operations can find an
appropriate object implementing the ORB interface by requesting injection of an ORB object or by
looking up the JNDI name java:comp/ORB. Any such reference to an ORB object is only valid within the
bean instance that performed the lookup.

The following example illustrates how an application component acquires and uses an ORB object via
injection.

@Resource
ORB orb;

public void method(...) {
 ...
 // Get the POA to use when creating object references.
 POA rootPOA = (POA)orb.resolve_initial_references("RootPOA");
 ...
}

The following example illustrates how an enterprise bean acquires and uses an ORB object using a JNDI
lookup.

public void method(...) {
 ...
 // Obtain the default initial JNDI context.
 Context initCtx = new InitialContext();

 // Look up the ORB object.
 ORB orb = (ORB)initCtx.lookup("java:comp/ORB");

 // Get the POA to use when creating object references.
 POA rootPOA = (POA)orb.resolve_initial_references("RootPOA");
 ...
}

An ORB reference may also be declared in a deployment descriptor in the same way as a resource
manager connection factory reference. Such a deployment descriptor entry may be used to specify
injection of an ORB object.

The ORB instance available under the JNDI name java:comp/ORB may always be a shared instance. By
default, the ORB instance injected into an enterprise bean or declared via a deployment descriptor entry
may also be a shared instance. However, the application may set the shareable element of the Resource
annotation to false, or may set the res-sharing-scope element in the deployment descriptor to

11.13. ORB References

DRAFT Jakarta Enterprise Beans, Core Features 299

Unshareable, to request a non-shared ORB instance.

11.13.1. Bean Provider’s Responsibility

The Bean Provider is responsible for requesting injection of the ORB object using the Resource
annotation, or using the defined name to look up the ORB object. If the shareable element of the Resource
annotation is set to false, the ORB object injected will not be the shared instance used by other
components in the application but instead will be a private ORB instance used only by the given
component.

11.13.2. Container Provider’s Responsibility

The Container Provider is responsible for providing an appropriate ORB object as required by this
specification.

11.14. TimerService References
The container must make the TimerService interface available either through injection using the
Resource annotation or in JNDI under the name java:comp/TimerService, in addition to through the
EJBContext interface. The authenticationType and shareable elements of the Resource annotation must
not be specified.

A TimerService object reference may also be declared in a deployment descriptor in the same way as a
resource environment reference. Such a deployment descriptor entry may be used to specify injection
of a TimerService object.

11.14.1. Bean Provider’s Responsibility

The Bean Provider is responsible for requesting injection of a TimerService object using a Resource
annotation, or using the defined name to lookup the TimerService object.

11.14.2. Container Provider’s Responsibility

The Container Provider is responsible for providing an appropriate TimerService object as required by
this specification.

11.15. EJBContext References
The container must make a component’s EJBContext interface available either through injection using
the Resource annotation or in JNDI under the name java:comp/EJBContext. The authenticationType and
shareable elements of the Resource annotation must not be specified.

An EJBContext object reference may also be declared in a deployment descriptor in the same way as a
resource environment reference. Such a deployment descriptor entry may be used to specify injection
of an EJBContext object.

11.14. TimerService References

300 Jakarta Enterprise Beans, Core Features DRAFT

11.15.1. Bean Provider’s Responsibility

The Bean Provider is responsible for requesting injection of an EJBContext object using a Resource
annotation or using the defined name to lookup the EJBContext object.

EJBContext objects accessed through the naming environment are only valid within the bean instance
that performed the lookup.

11.15.2. Container Provider’s Responsibility

The Container Provider is responsible for providing an appropriate EJBContext object to the
referencing component. The object returned must be of the appropriate specific type for the bean
requesting injection or performing the lookup—that is, the Container Provider must return an instance
of the SessionContext interface to referencing session beans and an instance of the
MessageDrivenContext interface to message-driven beans.

Independent of the singleton session bean’s concurrency management type, the Container Provider
must ensure concurrent access to the SessionContext object to be thread-safe.

11.16. Support for Other Resources and Configuration
Parameters
The container must follow the requirements for all other resources and configuration parameters
specified in the Java EE Platform specification[a9861].

11.17. Deprecated EJBContext.getEnvironment Method
The environment naming context introduced in EJB 1.1 replaced the EJB 1.0 concept of environment
properties.

An EJB 1.1 or later compliant container is not required to implement support for the EJB 1.0 style
environment properties. If the container does not implement the functionality, it should throw the
RuntimeException (or subclass thereof) from the EJBContext.getEnvironment method.

If an EJB 1.1 or later compliant container chooses to provide support for the EJB 1.0 style environment
properties (so that it can support enterprise beans written to the EJB 1.0 specification), it should
implement the support as described below.

When the tools convert the EJB 1.0 deployment descriptor to the EJB 1.1 XML format, they should place
the definitions of the environment properties into the ejb10-properties subcontext of the environment
naming context. The env-entry elements should be defined as follows: the env-entry-name element
contains the name of the environment property, the env-entry-type must be java.lang.String, and the
optional env-entry-value contains the environment property value.

For example, an EJB 1.0 enterprise bean with two environment properties foo and bar, should declare

11.16. Support for Other Resources and Configuration Parameters

DRAFT Jakarta Enterprise Beans, Core Features 301

the following env-entry elements in its EJB 1.1 format deployment descriptor.

 ...
<env-entry>
 <env-entry-name>ejb10-properties/foo</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
</env-entry>
<env-entry>
 <description>bar’s description</description>
 <env-entry-name>ejb10-properties/bar</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>bar value</env-entry-value>
</env-entry>
 ...

The container should provide the entries declared in the ejb10-properties subcontext to the instances
as a java.util.Properties object that the instances obtain by invoking the EJBContext.getEnvironment
method.

The enterprise bean uses the EJB 1.0 API to access the properties, as shown by the following example.

public class SomeBean implements SessionBean {
 SessionContext ctx;
 java.util.Properties env;

 public void setSessionContext(SessionContext sc) {
 ctx = sc;
 env = ctx.getEnvironment();
 }

 public someBusinessMethod(...) ... {
 String fooValue = env.getProperty("foo");
 String barValue = env.getProperty("bar");
 }
 ...
}

[1] The term "resource" is used generically in this chapter to refer to these other environment entries
as resources as well. Resources in the non-generic sense are described in Resource Manager
Connection Factory References.
[2] Component contract and client view of entity beans are described in the EJB Optional Features
document[a9890].
[3] The Bean Provider may also use this syntax in the beanName element of the EJB annotation.
[4] Connections obtained from the same resource manager connection factory through a different
resource manager connection factory reference may be shareable.

11.17. Deprecated EJBContext.getEnvironment Method

302 Jakarta Enterprise Beans, Core Features DRAFT

Chapter 12. Security Management
This chapter defines the EJB architecture’s support for security management.

12.1. Overview
We set the following goals for the security management in the EJB architecture:

Lessen the burden of the application developer (i.e. the Bean Provider) for securing the application by
allowing greater coverage from more qualified EJB roles. The EJB Container Provider provides the
implementation of the security infrastructure; the Deployer and System Administrator define the
security policies.

Allow the security policies to be set by the Application Assembler or Deployer.

Allow the enterprise bean applications to be portable across multiple EJB servers that use different
security mechanisms.

The EJB architecture encourages the Bean Provider to implement the enterprise bean class without
hard-coding the security policies and mechanisms into the business methods. In most cases, the
enterprise bean’s business methods should not contain any security-related logic. This allows the
Deployer to configure the security policies for the application in a way that is most appropriate for the
operational environment of the enterprise.

To make the Deployer’s task easier, the Bean Provider or the Application Assembler (which could be
the same party as the Bean Provider) may define security roles for an application composed of one or
more enterprise beans. A security role is a semantic grouping of permissions that a given type of users
of the application must have in order to successfully use the application. The Bean Provider can define
declaratively using metadata annotations or the deployment descriptor the method permissions for
each security role. The Applications Assembler can define, augment, or override the method
permissions using the deployment descriptor. A method permission is a permission to invoke a
specified group of methods of an enterprise bean’s business interface, no-interface view, home
interface, component interface, and/or web service endpoint. The security roles defined by the Bean
Provider or the Application Assembler present a simplified security view of the enterprise beans
application to the Deployer—the Deployer’s view of the application’s security requirements is the small
set of security roles rather than a large number of individual methods.

The security principal under which a method invocation is performed is typically that of the
component’s caller. By specifying a run-as identity, however, it is possible to specify that a different
principal be substituted for the execution of the methods of the bean’s business interface, no-interface
view, home interface, component interface, and/or web service endpoint and any methods of other
enterprise beans that the bean may call.

This determines whether the caller principal is propagated from the caller to the callee—that is,
whether the called enterprise bean will see the same returned value of the

12.1. Overview

DRAFT Jakarta Enterprise Beans, Core Features 303

EJBContext.getCallerPrincipal as the calling enterprise bean—or whether a security principal that has
been assigned to the specified security role will be used for the execution of the bean’s methods and
will be visible as the caller principal in the bean’s callee.

The Bean Provider can use metadata annotations or the deployment descriptor to specify whether the
caller’s security identity or a run-as security identity should be used for the execution of the bean’s
methods.

By default, the caller principal will be propagated as the caller identity. The Bean Provider can use the
RunAs annotation to specify that a security principal that has been assigned to a specified security role
be used instead. See Section See Specification of Security Identities in the Deployment Descriptor.

If the deployment descriptor is used to specify the security principal, the Bean Provider or the
Application Assembler can use the security-identity deployment descriptor element to specify the
security identity. If the security-identity deployment descriptor element is not specified and if a run-as
identity has not been specified by the use of the RunAs annotation or if use-caller-identity is specified as
the value of the security-identity element, the caller principal is propagated from the caller to the
callee. If the run-as element is specified, a security principal that has been assigned to the specified
security role will be used. The Application Assembler is permitted to override a security identity value
set or defaulted by the Bean Provider.

The Deployer is responsible for assigning principals, or groups of principals, which are defined in the
target operational environment, to the security roles defined by the Bean Provider or Application
Assembler. The Deployer is also responsible for assigning principals for the run-as identities specified.
The Deployer is further responsible for configuring other aspects of the security management of the
enterprise beans, such as principal mapping for inter-enterprise bean calls, and principal mapping for
resource manager access.

At runtime, a client will be allowed to invoke a business method only if the principal associated with
the client call has been assigned by the Deployer to have at least one security role that is allowed to
invoke the business method or if the Bean Provider or Application Assembler has specified that
security authorization is not to be checked for the method (i.e., that all roles, including any
unauthenticated roles, are permitted). See See Method Permissions.

The Container Provider is responsible for enforcing the security policies at runtime, providing the tools
for managing security at runtime, and providing the tools used by the Deployer to manage security
during deployment.

Because not all security policies can be expressed declaratively, the EJB architecture provides a simple
programmatic interface that the Bean Provider may use to access the security context from the
business methods.

The following sections define the responsibilities of the individual EJB roles with respect to security
management.

12.1. Overview

304 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a5322
Ejb.html#a5186

12.2. Bean Provider’s Responsibilities
This section defines the Bean Provider’s perspective of the EJB architecture support for security, and
defines his or her responsibilities. In addition, the Bean Provider may define the security roles for the
application, as defined in See Responsibilities of the Bean Provider and/or Application Assembler.

12.2.1. Invocation of Other Enterprise Beans

An enterprise bean business method can invoke another enterprise bean via the other bean’s business
interface, no-interface view, or home or component interface. The EJB architecture provides no
programmatic interfaces for the invoking enterprise bean to control the principal passed to the
invoked enterprise bean.

The management of caller principals passed on inter-enterprise bean invocations (i.e. principal
delegation) is set up by the Deployer and System Administrator in a container-specific way. The Bean
Provider and Application Assembler should describe all the requirements for the caller’s principal
management of inter-enterprise bean invocations as part of the description.

12.2.2. Resource Access

Section See Resource Manager Connection Factory References defines the protocol for accessing
resource managers, including the requirements for security management.

12.2.3. Access of Underlying OS Resources

The EJB architecture does not define the operating system principal under which enterprise bean
methods execute. Therefore, the Bean Provider cannot rely on a specific principal for accessing the
underlying OS resources, such as files. (See Subsection See System Principal for the reasons behind this
rule.)

We believe that most enterprise business applications store information in resource managers such as
relational databases rather than in resources at the operating system levels. Therefore, this rule should
not affect the portability of most enterprise beans.

12.2.4. Programming Style Recommendations

The Bean Provider should neither implement security mechanisms nor hard-code security policies in
the enterprise beans’ business methods. Rather, the Bean Provider should rely on the security
mechanisms provided by the EJB container.

The Bean Provider can use metadata annotations and/or the deployment descriptor to convey security-
related information to the Deployer. The information helps the Deployer to set up the appropriate
security policy for the enterprise bean application.

12.2. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 305

Ejb.html#a5121
Ejb.html#a4159
Ejb.html#a5425

12.2.5. Programmatic Access to Caller’s Security Context

Note: In general, security management should be enforced by the container in a manner that is
transparent to the enterprise beans’ business methods. The security API described in this section
should be used only in the less frequent situations in which the enterprise bean business methods
need to access the security context information.

The javax.ejb.EJBContext interface provides two methods (plus two deprecated methods that were
defined in EJB 1.0) that allow the Bean Provider to access security information about the enterprise
bean’s caller.

public interface javax.ejb.EJBContext \{

...

//

 // The following two methods allow the EJB
class

// to access security information.

//

 java.security.Principal
getCallerPrincipal();

boolean isCallerInRole(String roleName);

//

 // The following two EJB 1.0 methods are
deprecated.

12.2. Bean Provider’s Responsibilities

306 Jakarta Enterprise Beans, Core Features DRAFT

//

java.security.Identity getCallerIdentity();

 boolean
isCallerInRole(java.security.Identity role);

...

}

The Bean Provider can invoke the getCallerPrincipal and isCallerInRole methods only in the enterprise
bean’s business methods as specified in See Operations Allowed in the Methods of a Stateful Session
Bean, See Operations Allowed in the Methods of a Stateless Session Bean, See Operations Allowed in
the Methods of a Message-Driven Bean, ../Optional/Chapters.html#UNKNOWN, and ../Optional/
Chapters.html#UNKNOWN. If they are otherwise invoked when no security context exists, they should
throw the java.lang.IllegalStateException runtime exception.

The getCallerIdentity() and isCallerInRole(Identity role) methods were deprecated in EJB 1.1. The Bean
Provider must use the getCallerPrincipal() and isCallerInRole(String roleName) methods for new
enterprise beans.

An EJB 1.1 or later compliant container may choose to implement the two deprecated methods as
follows.

A container that does not want to provide support for this deprecated method should throw a
RuntimeException (or subclass of RuntimeException) from the getCallerIdentity method.

A container that wants to provide support for the getCallerIdentity method should return an instance
of a subclass of the java.security.Identity abstract class from the method. The getName method invoked
on the returned object must return the same value that getCallerPrincipal().getName() would return.

A container that does not want to provide support for this deprecated method should throw a
RuntimeException (or subclass of RuntimeException) from the isCallerInRole(Identity identity)
method.

A container that wants to implement the isCallerInRole(Identity identity) method should implement it
as follows:

 public boolean isCallerInRole(Identity
identity) \{

12.2. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 307

Ejb.html#a953
Ejb.html#a953
Ejb.html#a1091
Ejb.html#a1886
Ejb.html#a1886
../Optional/Chapters.html#UNKNOWN
../Optional/Chapters.html#UNKNOWN
../Optional/Chapters.html#UNKNOWN

return isCallerInRole(identity.getName());

}

12.2.5.1. Use of getCallerPrincipal

The purpose of the getCallerPrincipal method is to allow the enterprise bean methods to obtain the
current caller principal’s name. The methods might, for example, use the name as a key to information
in a database.

An enterprise bean can invoke the getCallerPrincipal method to obtain a java.security.Principal
interface representing the current caller. The enterprise bean can then obtain the distinguished name
of the caller principal using the getName method of the java.security.Principal interface. If the security
identity has not been established, getCallerPrincipal returns the container’s representation of the
unauthenticated identity.

Note that getCallerPrincipal returns the principal that represents the caller of the enterprise bean, not
the principal that corresponds to the run-as security identity for the bean, if any.

The meaning of the current caller, the Java class that implements the java.security.Principal interface,
and the realm of the principals returned by the getCallerPrincipal method depend on the operational
environment and the configuration of the application.

An enterprise may have a complex security infrastructure that includes multiple security domains. The
security infrastructure may perform one or more mapping of principals on the path from an EJB caller
to the EJB object. For example, an employee accessing his or her company over the Internet may be
identified by a userid and password (basic authentication), and the security infrastructure may
authenticate the principal and then map the principal to a Kerberos principal that is used on the
enterprise’s intranet before delivering the method invocation to the EJB object. If the security
infrastructure performs principal mapping, the getCallerPrincipal method returns the principal that is
the result of the mapping, not the original caller principal. (In the previous example, getCallerPrincipal
would return the Kerberos principal.) The management of the security infrastructure, such as
principal mapping, is performed by the System Administrator role; it is beyond the scope of the EJB
specification.

The following code sample illustrates the use of the getCallerPrincipal() method.

@Stateless public class EmployeeServiceBean

implements EmployeeService\{

@Resource SessionContext ctx;

12.2. Bean Provider’s Responsibilities

308 Jakarta Enterprise Beans, Core Features DRAFT

@PersistenceContext EntityManager em;

public void changePhoneNumber(...) \{

...

// obtain the caller principal.

callerPrincipal = ctx.getCallerPrincipal();

// obtain the caller principal’s name.

callerKey = callerPrincipal.getName();

 // use callerKey as primary key to find
EmployeeRecord

EmployeeRecord myEmployeeRecord =

em.find(EmployeeRecord.class, callerKey);

// update phone number

myEmployeeRecord.setPhoneNumber(...);

...

}

12.2. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 309

}

In the previous example, the enterprise bean obtains the principal name of the current caller and uses
it as the primary key to locate an EmployeeRecord entity. This example assumes that application has
been deployed such that the current caller principal contains the primary key used for the
identification of employees (e.g., employee number).

12.2.5.2. Use of isCallerInRole

The main purpose of the isCallerInRole(String roleName) method is to allow the Bean Provider to code
the security checks that cannot be easily defined declaratively in the deployment descriptor using
method permissions. Such a check might impose a role-based limit on a request, or it might depend on
information stored in the database.

The enterprise bean code can use the isCallerInRole method to test whether the current caller has been
assigned to a given security role. Security roles are defined by the Container, Bean Provider or the
Application Assembler (see Subsection See Security Roles), and are assigned to principals or principal
groups that exist in the operational environment by the Deployer.

The enterprise bean code can also use the isCallerInRole method to test whether the current caller has
been authenticated; and without further consideration of whether the authenticated caller has been
assigned to one or more specific security roles. To perform this test, the code passes the value “**” as
the argument to the isCallerInRole method. As is the case with all calls to the isCallerInRole method,
the run-time return value of the call will depend on the security role linked to the reference (as defined
in section See Linking Security Role References to Security Roles) and on the principal-to-role mapping
configured for the linked role (as defined in section See Assignment of Security Roles).

Note that isCallerInRole(String roleName) tests the principal that represents the caller of the enterprise
bean, not the principal that corresponds to the run-as security identity for the bean, if any.

The following code sample illustrates the use of the isCallerInRole(String roleName) method.

@Stateless public class PayrollBean implements Payroll \{

@Resource SessionContext ctx;

 public void updateEmployeeInfo(EmplInfo
info) \{

oldInfo = ... read from database;

12.2. Bean Provider’s Responsibilities

310 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a5130
Ejb.html#a5293
Ejb.html#a5371

 // The salary field can be changed only by
callers

// who have the security role "payroll"

if (info.salary != oldInfo.salary &&

!ctx.isCallerInRole("payroll")) \{

throw new SecurityException(...);

}

...

}

...

}

12.2.5.3. Declaration of Security Roles Referenced from the Bean’s Code

The Bean Provider is responsible for declaring all names that may be used to reference security roles
from the enterprise bean code. The names of security roles defined in the deployment descriptor or
used in the RolesAllowed annotation are implicitly declared. The Bean Provider is responsible for
using either the DeclareRoles annotation or the security-role-ref elements of the deployment descriptor
to declare all such names that are not implicitly declared.

The DeclareRoles annotation is specified on a bean class, where it serves to declare the names of
(otherwise undeclared) roles that may be tested by calling isCallerInRole from within the methods of
the annotated class. Declaring the security roles allows the Bean Provider, Application Assembler, or
Deployer to link security role names used in the code to the security roles defined for an assembled
application. In the absence of this linking step, any security role name as used in the code will be
assumed to correspond to a security role of the same name.

12.2. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 311

When the Bean Provider uses the DeclareRoles annotation to declare the name of a role used as a
parameter to the isCallerInRole(String roleName) method, the declared name must be the same as the
parameter value. The Bean Provider may optionally provide a description of the named security roles
in the description element of the DeclareRoles annotation.

In the following example, the DeclareRoles annotation is used to indicate that the enterprise bean
AardvarkPayroll makes the security check using isCallerInRole("payroll") in its business method.

@DeclareRoles("payroll")

@Stateless public class PayrollBean implements Payroll \{

@Resource SessionContext ctx;

 public void updateEmployeeInfo(EmplInfo
info) \{

oldInfo = ... read from database;

 // The salary field can be changed only by
callers

// who have the security role "payroll"

if (info.salary != oldInfo.salary &&

!ctx.isCallerInRole("payroll")) \{

throw new SecurityException(...);

}

...

12.2. Bean Provider’s Responsibilities

312 Jakarta Enterprise Beans, Core Features DRAFT

}

...

}

The Bean Provider must use the security-role-ref elements of the deployment descriptor to declare any
security roles referenced in the code and not otherwise declared. The security-role-ref elements are
defined as follows:

Declare the name of the security role using the role-name element. The name must be the security role
name that is used as a parameter to the isCallerInRole(String roleName) method.

Optionally provide a description of the security role in the description element.

The following example illustrates how an enterprise bean’s references to security roles are declared in
the deployment descriptor.

...

<enterprise-beans>

...

<session>

<ejb-name>AardvarkPayroll</ejb-name>

<ejb-class>com.aardvark.payroll.PayrollBean</ejb-class>

...

<security-role-ref>

<description>

12.2. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 313

This security role should be assigned to the

employees of the payroll department who are

allowed to update employees’ salaries.

</description>

<role-name>payroll</role-name>

</security-role-ref>

...

</session>

...

</enterprise-beans>

...

The deployment descriptor above indicates that the enterprise bean AardvarkPayroll makes the
security check using isCallerInRole("payroll") in its business method.

A security role reference, including the name defined by the reference, is scoped to the component
whose bean class contains the DeclareRoles metadata annotation or whose deployment descriptor
element contains the security-role-ref deployment descriptor element.

The Bean Provider (or Application Assembler) may also use the security-role-ref elements for those
references that were declared in annotations and which the Bean Provider wishes to have linked to a
security-role whose name differs from the reference value. If a security role reference is not linked to a
security role in this way, the container must map the reference name to the security role of the same

12.2. Bean Provider’s Responsibilities

314 Jakarta Enterprise Beans, Core Features DRAFT

name. See section See Linking Security Role References to Security Roles for a description of how
security role references are linked to security roles.

12.3. Responsibilities of the Bean Provider and/or
Application Assembler
The Bean Provider and Application Assembler (which could be the same party as the Bean Provider)
may define a security view of the enterprise beans contained in the ejb-jar file. Providing the security
view is optional for the Bean Provider and Application Assembler.

The main reason for providing the security view of the enterprise beans is to simplify the Deployer’s
job. In the absence of a security view of an application, the Deployer needs detailed knowledge of the
application in order to deploy the application securely. For example, the Deployer would have to know
what each business method does to determine which users can call it. The security view defined by the
Bean Provider or Application Assembler presents a more consolidated view to the Deployer, allowing
the Deployer to be less familiar with the application.

The security view consists of a set of security roles. A security role is a semantic grouping of
permissions that a given type of users of an application must have in order to successfully use the
application.

The Bean Provider or Application Assembler defines method permissions for each security role. A
method permission is a permission to invoke a specified group of methods of the enterprise beans’
business interface, no-interface view, home interface, component interface, and/or web service
endpoint.

It is important to keep in mind that the security roles are used to define the logical security view of an
application. They should not be confused with the user groups, users, principals, and other concepts
that exist in the target enterprise’s operational environment.

In special cases, a qualified Deployer may change the definition of the security roles for an application,
or completely ignore them and secure the application using a different mechanism that is specific to
the operational environment.

12.3.1. Security Roles

The Bean Provider or Application Assembler can define one or more security roles in the bean’s
metadata annotations or deployment descriptor. The Bean Provider or Application Assembler then
assigns groups of methods of the enterprise beans’ business, home, and component interfaces, no-
interface view, and/or web service endpoints to the security roles to define the security view of the
application.

Because the Bean Provider and Application Assembler do not, in general, know the security
environment of the operational environment, the security roles are meant to be logical roles (or
actors), each representing a type of user that should have the same access rights to the application.

12.3. Responsibilities of the Bean Provider and/or Application Assembler

DRAFT Jakarta Enterprise Beans, Core Features 315

Ejb.html#a5293

The Deployer then assigns user groups and/or user accounts defined in the operational environment to
the security roles defined by the Bean Provider and Application Assembler.

A security role with the name “” is defined by the Container, and is intended to be used by the Bean
Provider, Application Assembler, or Deployer to indicate that the caller must log on or
authenticate to invoke a method or to perform some processing requiring membership in this
container role. This container security role indicates that authentication, without consideration
of role membership, is required. An application role should not be defined with the same name
as this container security role, and a security role reference should not be used to link this role
reference to a different role. Moreover the assignment of principals to the container role with
this name should not be subject to reconfiguration that would remove any authenticated user
from membership in the container role. That said, when an application defines a security role in
its deployment descriptor with the name “”, this application role is applied wherever the application
or its deployment descriptor refers to a role named “**”.

Defining the security roles in the metadata annotations and/or deployment descriptor is optional107.
Their omission means that the Bean Provider and Application Assembler chose not to pass any security
deployment related instructions to the Deployer.

If Java language metadata annotations are used, the Bean Provider uses the DeclareRoles and
RolesAllowed annotations to define the security roles. The set of security roles used by the application
is taken to be the aggregation of the security roles defined by the security role names used in the
DeclareRoles and RolesAllowed annotations. The Bean Provider may augment the set of security roles
defined for the application by annotations in this way by means of the security-role deployment
descriptor element.

If the deployment descriptor is used, the Bean Provider and/or Application Assembler uses the security-
role deployment descriptor element as follows:

Define each security role using a security-role element. An application security role with name “**”
should not be defined as the Container must provide a container security role with this name.

Use the role-name element to define the name of the security role.

Optionally, use the description element to provide a description of a security role.

The following example illustrates security roles definition in a deployment descriptor.

...

<assembly-descriptor>

<security-role>

12.3. Responsibilities of the Bean Provider and/or Application Assembler

316 Jakarta Enterprise Beans, Core Features DRAFT

#a10327

<description>

This role includes the employees of the

enterprise who are allowed to access the

employee self-service application. This role

is allowed only to access his/her own

information.

</description>

<role-name>employee</role-name>

</security-role>

<security-role>

<description>

 This role includes the employees of the
human

resources department. The role is allowed to

view and update all employee records.

12.3. Responsibilities of the Bean Provider and/or Application Assembler

DRAFT Jakarta Enterprise Beans, Core Features 317

</description>

<role-name>hr-department</role-name>

</security-role>

<security-role>

<description>

 This role includes the employees of the
payroll

department. The role is allowed to view and

update the payroll entry for any employee.

</description>

<role-name>payroll-department</role-name>

</security-role>

<security-role>

<description>

 This role should be assigned to the
personnel

12.3. Responsibilities of the Bean Provider and/or Application Assembler

318 Jakarta Enterprise Beans, Core Features DRAFT

 authorized to perform administrative
functions

for the employee self-service application.

This role does not have direct access to

sensitive employee and payroll information.

</description>

<role-name>admin</role-name>

</security-role>

...

</assembly-descriptor>

12.3.2. Method Permissions

If the Bean Provider and/or Application Assembler have defined security roles for the enterprise beans
in the ejb-jar file, they can also specify the methods of the business, home, and component interfaces,
no-interface views, and/or web service endpoints that each security role is allowed to invoke.

Metadata annotations and/or the deployment descriptor can be used for this purpose.

Method permissions are defined as a binary relation from the set of security roles to the set of methods
of the business interfaces, home interfaces, component interfaces, no-interface views, and/or web
service endpoints of session and entity108 beans, including all their superinterfaces (including the
methods of the EJBHome and EJBObject interfaces and/or EJBLocalHome and EJBLocalObject
interfaces). The method permissions relation includes the pair (R, M) if and only if the security role R is
allowed to invoke the method M.

12.3.2.1. Specification of Method Permissions with Metadata Annotations

The following is the description of the rules for the specification of method permissions using Java

12.3. Responsibilities of the Bean Provider and/or Application Assembler

DRAFT Jakarta Enterprise Beans, Core Features 319

#a10328

language metadata annotations.

The method permissions for the methods of a bean class may be specified on the class, the business
methods of the class, or both.

The RolesAllowed , PermitAll , and DenyAll annotations are used to specify method permissions. The
value of the RolesAllowed annotation is a list of security role names to be mapped to the security roles
that are permitted to execute the specified method(s). The PermitAll annotation specifies that all
security roles, including any unauthenticated roles, are permitted to execute the specified method(s).
The DenyAll annotation specifies that no security roles, including any unauthenticated roles, are
permitted to execute the specified method(s).

Specifying the RolesAllowed or PermitAll or DenyAll annotation on the bean class means that it applies
to all applicable business methods of the class.

Method permissions may be specified on a method of the bean class to override the method
permissions value specified on the bean class.

If the bean class has superclasses, the following additional rules apply.

A method permissions value specified on a superclass S applies to the business methods defined by S .

A method permissions value may be specified on a business method M defined by class S to override
for method M the method permissions value explicitly or implicitly specified on the class S .

If a method M of class S overrides a business method defined by a superclass of S , the method
permissions value of M is determined by the above rules as applied to class S .

Example:

@RolesAllowed("admin")

public class SomeClass \{

public void aMethod () \{...}

public void bMethod () \{...}

...

}

@Stateless public class MyBean extends SomeClass implements A \{

12.3. Responsibilities of the Bean Provider and/or Application Assembler

320 Jakarta Enterprise Beans, Core Features DRAFT

@RolesAllowed("HR")

public void aMethod () \{...}

public void cMethod () \{...}

...

}

Assuming aMethod , bMethod , cMethod are methods of business interface A , the method permissions
values of methods aMethod and bMethod are RolesAllowed(" HR ") and RolesAllowed(" admin ")
respectively. The method permissions for method cMethod have not been specified (see Sections See
Specification of Method Permissions in the Deployment Descriptor and See Unspecified Method
Permissions) .

12.3.2.2. Specification of Method Permissions in the Deployment Descriptor

The Bean Provider may use the deployment descriptor as an alternative to metadata annotations to
specify the method permissions (or as a means to supplement or override metadata annotations for
method permission values). The Application Assembler is permitted to override the method permission
values using the bean’s deployment descriptor.

Any values explicitly specified in the deployment descriptor override any values specified in
annotations. If a value for a method has not be specified in the deployment descriptor, and a value has
been specified for that method by means of the use of annotations, the value specified in annotations
will apply. The granularity of overriding is on the per-method basis.

The Bean Provider or Application Assembler defines the method permissions relation in the
deployment descriptor using the method-permission elements as follows.

Each method-permission element includes a list of one or more security roles and a list of one or more
methods. All the listed security roles are allowed to invoke all the listed methods. Each security role in
the list is identified by the role-name element, and each method (or a set of methods, as described
below) is identified by the method element. An optional description can be associated with a method-
permission element using the description element.

If the role name “**” is included in the list of allowed roles, and the application has not defined in its
deployment descriptor an application security role with this name, then the list of allowed roles
includes every and any authenticated user.

The method permissions relation is defined as the union of all the method permissions defined in the

12.3. Responsibilities of the Bean Provider and/or Application Assembler

DRAFT Jakarta Enterprise Beans, Core Features 321

Ejb.html#a5219
Ejb.html#a5219
Ejb.html#a5291
Ejb.html#a5291

individual method-permission elements.

A security role or a method may appear in multiple method-permission elements.

The Bean Provider or Application Assembler can indicate that all roles, including any unauthenticated
roles, are permitted to execute one or more specified methods (i.e., the methods should not be
“checked” for authorization prior to invocation by the container). The unchecked element is used
instead of a role name in the method-permission element to indicate that all roles, including any
unauthenticated roles, are permitted.

If the method permission relation specifies both the unchecked element for a given method and one or
more security roles, all roles are permitted for the specified methods.

The exclude-list element can be used to indicate the set of methods that should not be called. The
Deployer should configure the enterprise bean’s security such that no access is permitted to any
method contained in the exclude-list .

If a given method is specified both in the exclude-list element and in the method permission relation,
the Deployer should configure the enterprise bean’s security such that no access is permitted to the
method.

The method element uses the ejb-name, method-name, and method-params elements to denote one or
more methods of an enterprise bean’s business interface, home interface, component interface, no-
interface view, and/or web service endpoint. There are three legal styles for composing the method
element:

 +
<method> +
<ejb-name>EJBNAME</ejb-name> +
<method-name>*</method-name> +
</method> +
 +
This style is used for referring to all of the methods of the business,
home, and component interfaces, no-interface view, and web service
endpoint of a specified enterprise bean.

12.3. Responsibilities of the Bean Provider and/or Application Assembler

322 Jakarta Enterprise Beans, Core Features DRAFT

 +
<method> +
<ejb-name>EJBNAME</ejb-name> +
<method-name>METHOD</method-name> +
</method> +
 +
This style is used for referring to a specified method of the business,
home, or component interface, no-interface view, or web service endpoint
of the specified enterprise bean. If there are multiple methods with the
same overloaded name, this style refers to all of the overloaded
methods.

 +
<method> +
<ejb-name>EJBNAME</ejb-name> +
<method-name>METHOD</method-name> +
<method-params> +
<method-param>PARAMETER_1</method-param> +
... +
<method-param>PARAMETER_N</method-param> +
</method-params> +
</method> +
 +
This style is used to refer to a specified method within a set of
methods with an overloaded name. The method must be defined in the
specified enterprise bean’s business, home, or component interface,
no-interface view, or web service endpoint. If there are multiple
methods with the same overloaded name, however, this style refers to all
of the overloaded methods.

The optional method-intf element can be used to differentiate between methods with the same name
and signature that are multiply defined across the business, component, or home interfaces, no-
interface view, and/or web service endpoint. If the same method is a method of a local business
interface, local component interface, or no-interface view, the same method permission values apply to
the method for all of them. Likewise, if the same method is a method of both the remote business
interface and remote component interface, the same method permission values apply to the method
for both interfaces.

The following example illustrates how security roles are assigned method permissions in the
deployment descriptor:

...

12.3. Responsibilities of the Bean Provider and/or Application Assembler

DRAFT Jakarta Enterprise Beans, Core Features 323

<method-permission>

<role-name>employee</role-name>

<method>

<ejb-name>EmployeeService</ejb-name>

<method-name>*</method-name>

</method>

</method-permission>

<method-permission>

<role-name>employee</role-name>

<method>

<ejb-name>AardvarkPayroll</ejb-name>

<method-name>findByPrimaryKey</method-name>

</method>

<method>

12.3. Responsibilities of the Bean Provider and/or Application Assembler

324 Jakarta Enterprise Beans, Core Features DRAFT

<ejb-name>AardvarkPayroll</ejb-name>

<method-name>getEmployeeInfo</method-name>

</method>

<method>

<ejb-name>AardvarkPayroll</ejb-name>

<method-name>updateEmployeeInfo</method-name>

</method>

</method-permission>

<method-permission>

<role-name>payroll-department</role-name>

<method>

<ejb-name>AardvarkPayroll</ejb-name>

<method-name>findByPrimaryKey</method-name>

</method>

<method>

12.3. Responsibilities of the Bean Provider and/or Application Assembler

DRAFT Jakarta Enterprise Beans, Core Features 325

<ejb-name>AardvarkPayroll</ejb-name>

<method-name>getEmployeeInfo</method-name>

</method>

<method>

<ejb-name>AardvarkPayroll</ejb-name>

<method-name>updateEmployeeInfo</method-name>

</method>

<method>

<ejb-name>AardvarkPayroll</ejb-name>

<method-name>updateSalary</method-name>

</method>

</method-permission>

<method-permission>

<role-name>admin</role-name>

<method>

12.3. Responsibilities of the Bean Provider and/or Application Assembler

326 Jakarta Enterprise Beans, Core Features DRAFT

<ejb-name>EmployeeServiceAdmin</ejb-name>

<method-name>*</method-name>

</method>

</method-permission>

...

12.3.2.3. Unspecified Method Permissions

It is possible that some methods are not assigned to any security roles nor annotated as DenyAll or
contained in the exclude-list element. In this case, the Deployer should assign method permissions for
all of the unspecified methods, either by assigning them to security roles, or by marking them as
unchecked. If the Deployer does not assigned method permissions to the unspecified methods, those
methods must be treated by the container as unchecked .

12.3.3. Linking Security Role References to Security Roles

The application’s references to security roles are linked to the security roles defined for the
application. In the absence of any explicit linking, a security role reference will be linked to a security
role having the same name. This requirement also applies to role references with value “”, and an
explicit mapping should only be defined for a role reference with value “” when the reference
needs to be linked to an application role with name other than “**”.

The Application Assembler uses a security-role-ref element to explicitly link a role reference by a
component to a security role defined by annotation and/or by security-role element (as described in
section See Security Roles). The linkage is made explicit using the role-link element of the security-role-
ref element; in which case the value of the role-link element must be the name of one of the security
roles defined by annotation and/or security-role element.

A security-role-ref element need not be defined for a role reference that is to be mapped to a security-
role with the same name as the role reference, and when a role-link is not specified within a security-
role-ref, the reference is implicitly mapped to the security role with the same name as the reference.

The following deployment descriptor example shows how to link the security role reference named
payroll to the security role named payroll-department.

12.3. Responsibilities of the Bean Provider and/or Application Assembler

DRAFT Jakarta Enterprise Beans, Core Features 327

Ejb.html#a5130

...

<enterprise-beans>

...

<session>

<ejb-name>AardvarkPayroll</ejb-name>

<ejb-class>com.aardvark.payroll.PayrollBean</ejb-class>

...

<security-role-ref>

<description>

This role should be assigned to the

employees of the payroll department.

Members of this role have access to

anyone’s payroll record.

The role has been linked to the

payroll-department role.

12.3. Responsibilities of the Bean Provider and/or Application Assembler

328 Jakarta Enterprise Beans, Core Features DRAFT

</description>

<role-name>payroll</role-name>

<role-link>payroll-department</role-link>

</security-role-ref>

...

</session>

...

</enterprise-beans>

...

12.3.4. Specification of Security Identities in the Deployment Descriptor

The Bean Provider or Application Assembler typically specifies whether the caller’s security identity
should be used for the execution of the methods of an enterprise bean or whether a specific run-as
identity should be used.

By default the caller’s security identity is used. The Bean Provider can use the RunAs metadata
annotation to specify a run-as identity for the execution of the bean’s methods. If the deployment
descriptor is used, the Bean Provider or the Application Assembler can use the security-identity
deployment descriptor element for this purpose or to override a security identity specified in
metadata. The value of the security-identity element is either use-caller-identity or run-as .

Defining the security identities in the deployment descriptor is optional for the Application Assembler.
Their omission in the deployment descriptor means that the Application Assembler chose not to pass
any instructions related to security identities to the Deployer in the deployment descriptor.

If a run-as security identity is not specified by the Deployer, the container should use the caller’s

12.3. Responsibilities of the Bean Provider and/or Application Assembler

DRAFT Jakarta Enterprise Beans, Core Features 329

security identity for the execution of the bean’s methods.

12.3.4.1. Run-as

The Bean Provider can use the RunAs metadata annotation or the Bean Provider or Application
Assembler can use the run-as deployment descriptor element to define a run-as identity for an
enterprise bean in the deployment descriptor. The run-as identity applies to the enterprise bean as a
whole, that is, to all methods of the enterprise bean’s business, home, and component interfaces, no-
interface view, and/or web service endpoint; to the message listener methods of a message-driven
bean; and to the timeout callback methods of an enterprise bean; and all internal methods of the bean
that they might in turn call.

 _Establishing a run-as identity for an
enterprise bean does not affect the identities of its callers, which are
the identities tested for permission to access the methods of the
enterprise bean. The run-as identity establishes the identity the
enterprise bean will use when it makes calls._

Because the Bean Provider and Application Assembler do not, in general, know the security
environment of the operational environment, the run-as identity is designated by a logical role-name,
which corresponds to one of the security roles defined by the Bean Provider or Application Assembler
in the metadata annotations or deployment descriptor.

The Deployer then assigns a security principal defined in the operational environment to be used as
the principal for the run-as identity. The security principal assigned by the Deployer should be a
principal that has been assigned to the security role specified by RunAs annotation or by the role-name
element of the run-as deployment descriptor element.

The Bean Provider and/or Application Assembler is responsible for the following in the specification of
run-as identities:

Use the RunAs metadata annotation or role-name element of the run-as deployment descriptor element
to define the name of the security role.

Optionally, use the description element to provide a description of the principal that is expected to be
bound to the run-as identity in terms of its security role.

The following example illustrates the definition of a run-as identity using metadata annotations.

@RunAs("admin")

@Stateless public class EmployeeServiceBean

implements EmployeeService\{

12.3. Responsibilities of the Bean Provider and/or Application Assembler

330 Jakarta Enterprise Beans, Core Features DRAFT

...

}

Using the deployment descriptor, this can be specified as follows.

...

<enterprise-beans>

...

<session>

<ejb-name>EmployeeService</ejb-name>

...

<security-identity>

<run-as>

<role-name>admin</role-name>

</run-as>

</security-identity>

...

12.3. Responsibilities of the Bean Provider and/or Application Assembler

DRAFT Jakarta Enterprise Beans, Core Features 331

</session>

...

</enterprise-beans>

...

12.4. Deployer’s Responsibilities
The Deployer is responsible for ensuring that an assembled application is secure after it has been
deployed in the target operational environment. This section defines the Deployer’s responsibility with
respect to EJB security management.

The Deployer uses deployment tools provided by the EJB Container Provider to read the security view
of the application supplied by the Bean Provider and/or Application Assembler in the metadata
annotations and/or deployment descriptor. The Deployer’s job is to map the security view that was
specified by the Bean Provider and/or Application Assembler to the mechanisms and policies used by
the security domain in the target operational environment. The output of the Deployer’s work includes
an application security policy descriptor that is specific to the operational environment. The format of
this descriptor and the information stored in the descriptor are specific to the EJB container.

The following subsections describe the security related tasks performed by the Deployer.

12.4.1. Security Domain and Principal Realm Assignment

The Deployer is responsible for assigning the security domain and principal realm to an enterprise
bean application.

Multiple principal realms within the same security domain may exist, for example, to separate the
realms of employees, trading partners, and customers. Multiple security domains may exist, for
example, in application hosting scenarios.

12.4.2. Assignment of Security Roles

The Deployer assigns principals and/or groups of principals (such as individual users or user groups)
used for managing security in the operational environment to the security roles defined by means of
the DeclareRoles and RolesAllowed metadata annotations and/or security-role elements of the
deployment descriptor.

The Deployer does not define (or in effect redefine) the principals assigned to the container security

12.4. Deployer’s Responsibilities

332 Jakarta Enterprise Beans, Core Features DRAFT

role with name “**”. The Container is required to assign a principal of any and every authenticated
user (as defined by the operational environment of the application) to the container security role with
this name.

The Deployer does not assign principals and/or principal groups to the security role references—the
principals and/or principals groups assigned to a security role apply also to all the linked security role
references. For example, the Deployer of the AardvarkPayroll enterprise bean in subsection See
Linking Security Role References to Security Roles would assign principals and/or principal groups to
the security-role payroll-department, and the assigned principals and/or principal groups would be
implicitly assigned also to the linked security role reference payroll.

The EJB architecture does not specify how an enterprise should implement its security architecture.
Therefore, the process of assigning the logical security roles defined in the application’s deployment
descriptor to the operational environment’s security concepts is specific to that operational
environment. Typically, the deployment process consists of assigning to each security role one or more
user groups (or individual users) defined in the operational environment. This assignment is done on a
per-application basis. (That is, if multiple independent ejb-jar files use the same security role name,
each may be assigned differently.) If the Deployer does not assign the logical security roles defined by
the application to groups in the operational environment, it must be assumed that a logical role maps
to a principal or principal group of the same name.

12.4.3. Principal Delegation

The Deployer is responsible for configuring the principal delegation for inter-component calls. The
Deployer must follow any instructions supplied by the Bean Provider and/or Application Assembler
(for example, provided in the RunAs metadata annotations, the run-as elements of the deployment
descriptor, in the description elements of the annotations or deployment descriptor, or in a
deployment manual).

If the security identity is defaulted, or it is explicitly specified that the caller identity be used (e.g., use-
caller-identity deployment descriptor element is specified), the caller principal is propagated from one
component to another (i.e., the caller principal of the first enterprise bean in a call-chain is passed to
the enterprise beans down the chain).

If the Bean Provider or Application Assembler specifies that a run-as identity be used on behalf of a
particular enterprise bean, the Deployer must configure the enterprise beans such that the run-as
principal is used as the caller principal on any calls that the enterprise bean makes to other beans, and
that the run-as principal is propagated along the call-chain of those other beans (in the absence of the
specification of any further run-as elements).

12.4.4. Security Management of Resource Access

The Deployer’s responsibilities with respect to securing resource managers access are defined in
subsection See Deployer’s Responsibility.

12.4. Deployer’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 333

Ejb.html#a5293
Ejb.html#a5293
Ejb.html#a4312

12.4.5. General Notes on Deployment Descriptor Processing

The Deployer can use the security view defined in the deployment descriptor by the Bean Provider and
Application Assembler merely as “hints” and may change the information whenever necessary to
adapt the security policy to the operational environment.

Since providing the security information is optional for the Bean Provider and Application Assembler,
the Deployer is responsible for performing any tasks that have not been done by the Bean Provider or
Application Assembler. (For example, if the definition of security roles and method permissions is
missing in the metadata annotations and in deployment descriptor, the Deployer must define the
security roles and method permissions for the application.) It is not required that the Deployer store
the output of this activity in the standard ejb-jar file format.

12.5. EJB Client Responsibilities
This section defines the rules that the EJB client program must follow to ensure that the security
context passed on the client calls, and possibly imported by the enterprise bean, do not conflict with
the EJB server’s capabilities for association between a security context and transactions.

These rules are:

A transactional client cannot change its principal association within a transaction. This rule ensures
that all calls from the client within a transaction are performed with the same security context.

A session bean’s client must not change its principal association for the duration of the communication
with the session object. This rule ensures that the server can associate a security identity with the
session instance at instance creation time, and never have to change the security association during
the session instance lifetime.

If transactional requests within a single transaction arrive from multiple clients (this could happen if
there are intermediary objects or programs in the transaction call-chain), all requests within the same
transaction must be associated with the same security context.

12.6. EJB Container Provider’s Responsibilities
This section describes the responsibilities of the EJB Container Provider and Server Provider.

12.6.1. Deployment Tools

The EJB Container Provider is responsible for providing the deployment tools that the Deployer can use
to perform the tasks defined in Section See Deployer’s Responsibilities.

The deployment tools read the information from the beans’ metadata annotations and/or deployment
descriptor and present the information to the Deployer. The tools guide the Deployer through the
deployment process, and present him or her with choices for mapping the security information in the
metadata annotations and deployment descriptor to the security management mechanisms and

12.5. EJB Client Responsibilities

334 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a5364

policies used in the target operational environment.

The deployment tools’ output is stored in an EJB container-specific manner, and is available at runtime
to the EJB container.

12.6.2. Security Domain(s)

The EJB container provides a security domain and one or more principal realms to the enterprise
beans. The EJB architecture does not specify how an EJB server should implement a security domain,
and does not define the scope of a security domain.

A security domain can be implemented, managed, and administered by the EJB server. For example,
the EJB server may store X509 certificates or it might use an external security provider such as
Kerberos.

The EJB specification does not define the scope of the security domain. For example, the scope may be
defined by the boundaries of the application, EJB server, operating system, network, or enterprise.

The EJB server can, but is not required to, provide support for multiple security domains, and/or
multiple principal realms.

The case of multiple domains on the same EJB server can happen when a large server is used for
application hosting. Each hosted application can have its own security domain to ensure security and
management isolation between applications owned by multiple organizations.

12.6.3. Security Mechanisms

The EJB Container Provider must provide the security mechanisms necessary to enforce the security
policies set by the Deployer. The EJB specification does not specify the exact mechanisms that must be
implemented and supported by the EJB server.

The typical security functions provided by the EJB server include:

Authentication of principals.

Access authorization for EJB calls and resource manager access.

Secure communication with remote clients (privacy, integrity, etc.).

12.6.4. Passing Principals on EJB Calls

The EJB Container Provider is responsible for providing the deployment tools that allow the Deployer
to configure the principal delegation for calls from one enterprise bean to another. The EJB container
is responsible for performing the principal delegation as specified by the Deployer.

The EJB container must be capable of allowing the Deployer to specify that, for all calls from a single
application within a single Java EE product, the caller principal is propagated on calls from one

12.6. EJB Container Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 335

enterprise bean to another (i.e., the multiple beans in the call chain will see the same return value
from getCallerPrincipal).

This requirement is necessary for applications that need a consistent return value of getCallerPrincipal
across a chain of calls between enterprise beans.

The EJB container must be capable of allowing the Deployer to specify that a run-as principal be used
for the execution of the business, home, and component interfaces, no-interface view, and/or web
service endpoint methods of a session or an entity109 bean, or for the message listener methods of a
message-driven bean.

12.6.5. Security Methods in javax.ejb.EJBContext

The EJB container must provide access to the caller’s security context information from the enterprise
beans’ instances via the getCallerPrincipal() and isCallerInRole(String roleName) methods. The EJB
container must provide the caller’s security context information during the execution of a business
method invoked via the enterprise bean’s business, home, component, no-interface view, or messsage
listener interface, web service endpoint, and/or TimedObject interface, as defined in See Operations
Allowed in the Methods of a Stateful Session Bean, See Operations Allowed in the Methods of a
Stateless Session Bean, See Operations Allowed in the Methods of a Message-Driven Bean, ../Optional/
Chapters.html#UNKNOWN, and ../Optional/Chapters.html#UNKNOWN. The container must ensure that
all enterprise bean method invocations received through these interfaces are associated with some
principal. If the security identity of the caller has not been established, the container returns the
container’s representation of the unauthenticated identity. The container must never return a null
from the getCallerPrincipal method.

12.6.6. Secure Access to Resource Managers

The EJB Container Provider is responsible for providing secure access to resource managers as
described in Subsection See Container Provider Responsibility.

12.6.7. Principal Mapping

If the application requires that its clients are deployed in a different security domain, or if multiple
applications deployed across multiple security domains need to interoperate, the EJB Container
Provider is responsible for the mechanism and tools that allow mapping of principals. The tools are
used by the System Administrator to configure the security for the application’s environment.

12.6.8. System Principal

The EJB specification does not define the “system” principal under which the JVM running an
enterprise bean’s method executes.

Leaving the principal undefined makes it easier for the EJB container vendors to provide runtime
support for EJB on top of their existing server infrastructures. For example, while one EJB container
implementation can execute all instances of all enterprise beans in a single JVM, another

12.6. EJB Container Provider’s Responsibilities

336 Jakarta Enterprise Beans, Core Features DRAFT

#a10329
Ejb.html#a953
Ejb.html#a953
Ejb.html#a1091
Ejb.html#a1091
Ejb.html#a1886
../Optional/Chapters.html#UNKNOWN
../Optional/Chapters.html#UNKNOWN
../Optional/Chapters.html#UNKNOWN
Ejb.html#a4322

implementation can use a separate JVM per ejb-jar per client. Some EJB containers may make the
system principal the same as the application-level principal. Others may use different principals,
potentially from different principal realms and even security domains.

12.6.9. Runtime Security Enforcement

The EJB container is responsible for enforcing the security policies defined by the Deployer. The
implementation of the enforcement mechanism is EJB container implementation-specific. The EJB
container may, but does not have to, use the Java programming language security as the enforcement
mechanism.

For example, to isolate multiple executing enterprise bean instances, the EJB container can load the
multiple instances into the same JVM and isolate them via using multiple class loaders, or it can load
each instance into its own JVM and rely on the address space protection provided by the operating
system.

The general security enforcement requirements for the EJB container follow:

The EJB container must provide enforcement of the client access control per the policy defined by the
Deployer. A caller is allowed to invoke a method if, and only if, the method is specified as PermitAll or
the caller is assigned at least one of the security roles that includes the method in its method
permissions definition. (That is, it is not meant that the caller must be assigned all the roles associated
with the method.) If the container denies a client access to a business method, the container should
throw the javax.ejb.EJBAccessException110 . If the EJB 2.1 client view is used, the container must throw
the java.rmi.RemoteException (or its subclass, the java.rmi.AccessException) to the client if the client is
a remote client, or the javax.ejb.EJBException (or its subclass, the javax.ejb.AccessLocalException) if the
client is a local client.

The EJB container must isolate an enterprise bean instance from other instances and other application
components running on the server. The EJB container must ensure that other enterprise bean
instances and other application components are allowed to access an enterprise bean only via the
enterprise bean’s business interface, component interface, home interface, no-interface view, and/or
web service endpoint.

The EJB container must isolate an enterprise bean instance at runtime such that the instance does not
gain unauthorized access to privileged system information. Such information includes the internal
implementation classes of the container, the various runtime state and context maintained by the
container, object references of other enterprise bean instances, or resource managers used by other
enterprise bean instances. The EJB container must ensure that the interactions between the enterprise
beans and the container are only through the EJB architected views.

The EJB container must ensure the security of the persistent state of the enterprise beans.

The EJB container must manage the mapping of principals on calls to other enterprise beans or on
access to resource managers according to the security policy defined by the Deployer.

12.6. EJB Container Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 337

#a10330

The container must allow the same enterprise bean to be deployed independently multiple times, each
time with a different security policy111. The container must allow multiple-deployed enterprise beans
to co-exist at runtime.

12.6.10. Audit Trail

The EJB container may provide a security audit trail mechanism. A security audit trail mechanism
typically logs all java.security.Exceptions . It also logs all denials of access to EJB servers, EJB containers,
EJB business interfaces, EJB component interfaces, EJB home interfaces, EJB no-interface views, and
EJB web service endpoints.

12.7. System Administrator’s Responsibilities
This section defines the security-related responsibilities of the System Administrator. Note that some
responsibilities may be carried out by the Deployer instead, or may require cooperation of the
Deployer and the System Administrator.

12.7.1. Security Domain Administration

The System Administrator is responsible for the administration of principals. Security domain
administration is beyond the scope of the EJB specification.

Typically, the System Administrator is responsible for creating a new user account, adding a user to a
user group, removing a user from a user group, and removing or freezing a user account.

12.7.2. Principal Mapping

If the client is in a different security domain than the target enterprise bean, the System Administrator
is responsible for mapping the principals used by the client to the principals defined for the enterprise
bean. The result of the mapping is available to the Deployer.

The specification of principal mapping techniques is beyond the scope of the EJB architecture.

12.7.3. Audit Trail Review

If the EJB container provides an audit trail facility, the System Administrator is responsible for its
management.

12.7. System Administrator’s Responsibilities

338 Jakarta Enterprise Beans, Core Features DRAFT

#a10331

Chapter 13. Timer Service
This chapter defines the EJB container-managed Timer Service. The EJB Timer Service is a container-
provided service that allows the Bean Provider to register enterprise beans for timer callbacks to occur
according to a calendar-based schedule, at a specified time, after a specified elapsed time, or at
specified intervals.

13.1. Overview
Enterprise applications that model workflow-type business processes are dependent on notifications
that certain temporal events have occurred in order to manage the semantic state transitions that are
intrinsic to the business processes that they model.

The EJB Timer Service is a container-managed service that allows callbacks to be scheduled for time-
based events. The container provides a reliable and transactional notification service for timed events.
Timer notifications may be scheduled to occur according to a calendar-based schedule, at a specific
time, after a specific elapsed duration, or at specific recurring intervals.

The Timer Service is implemented by the EJB container. An enterprise bean accesses this service by
means of dependency injection, through the EJBContext interface, or through lookup in the JNDI
namespace.

The EJB Timer Service is a coarse-grained timer notification service that is designed for use in the
modeling of application-level processes. It is not intended for the modeling of real-time events.

While timer durations are expressed in millisecond units, this is because the millisecond is the unit of
time granularity used by the APIs of the Java SE platform. It is expected that most timed events will
correspond to hours, days, or longer periods of time.

The following sections describe the Timer Service with respect to the various individual EJB roles.

13.2. Bean Provider’s View of the Timer Service
The EJB Timer Service is a container-provided service that allows enterprise beans to be registered for
timer callback methods to occur according to a calendar-based schedule, at a specified time, after a
specified elapsed time, or after specified intervals. The Timer Service provides methods for the
programmatic creation and cancellation of timers, as well as for locating the timers that are associated
with a bean or with all beans in an EJB module. Timers can also be created automatically by the
container at deployment time based on metadata in the bean class or in the deployment descriptor.

A timer is created to schedule timed callbacks. The bean class of an enterprise bean that uses the Timer
Service can provide one or more timeout callback methods. A bean can have one or more callback
methods corresponding to automatically-created timers as well as a callback method corresponding to
one or more programmatically-created timers.

13.1. Overview

DRAFT Jakarta Enterprise Beans, Core Features 339

For programmatically created timers, the timeout callback method must either be a single method that
is annotated with the Timeout annotation or the bean must implement the javax.ejb.TimedObject
interface. The javax.ejb.TimedObject interface has a single method, the timer callback method
ejbTimeout .

For automatically created timers, the Schedule annotation denotes its the timeout method.

Timers can be created for stateless session beans, singleton session beans, message-driven beans112.
Timers cannot be created for stateful session beans113.

The timeout callback method invocation for a timer that is created for a stateless session bean or a
message-driven bean may be called on any bean instance in the pooled state.

The timeout callback method for a programmatically created persistent timer will be invoked on the
JVM on which the timer was created or on another JVM instance across which the container is
distributed. The timeout callback method for a programmatically created non-persistent timer will be
invoked on the JVM on which the timer was created. The timeout callback method for a
programmatically created timer is invoked on a single JVM instance regardless of the number of JVMs
across which the container is distributed.

For each automatically-created persistent timer, the container creates a single persistent timer,
regardless of the number of JVMs across which the container is distributed. For automatically-created
non-persistent timers, the container creates a new non-persistent timer during application
initialization for each JVM across which the container is distributed.

In the event of a container crash or container shutdown, the timeout callback method for a persistent
timer that has not been cancelled will be invoked on a new JVM when the container is restarted or on
another JVM instance across which the container is distributed. This rule applies to both
programmatically or automatically created persistent timers.

When the time specified at timer creation elapses, the container invokes the associated timeout
callback method of the bean. A timer may be cancelled before its expiration. If a timer is cancelled, its
associated timeout callback method is not called114. A timer is cancelled by calling its cancel method.

Invocations of the timeout callback methods and the methods of the Timer Service to
programmatically create timers and to cancel timers are typically made within a transaction.

The Timer Service is intended for the modelling of long-lived business processes. Timers survive
container crashes, server shutdown, and the activation/passivation and load/store cycles of the
enterprise beans that are registered with them. These persistent guarantees can optionally be disabled
on a per-timer basis.

13.2.1. Calendar-Based Time Expressions

The Timer Service allows a timer callback schedule to be expressed using a calendar-based syntax that
is modeled after the UNIX cron facility. Calendar-based expressions can be used both for programmatic
timer creation and for automatic timer creation, and can be specified by means of annotations or the

13.2. Bean Provider’s View of the Timer Service

340 Jakarta Enterprise Beans, Core Features DRAFT

#a10332
#a10333
#a10334

deployment descriptor. Each of these approaches for expressing the calendar-based schedule shares
common syntax and defaults.

13.2.1.1. Calendar-Based Time Expression Attributes

There are seven attributes in a calendar-based time expression:

second: one or more seconds within a minute

Allowable values: [0,59]

minute: one or more minutes within an hour

Allowable values: [0,59]

hour: one or more hours within a day

Allowable values: [0,23]

dayOfMonth: one or more days within a month

Allowable values:

[1,31] or

[-7, -1] or

“Last” or

 \{“1st”, “2nd”, “3rd”, “4th”, “5th”, “Last”}
\{“Sun”, “Mon”, “Tue”, “Wed”, “Thu”, “Fri”, “Sat”}

“Last” means the last day of the month

 -x (where x is in the range [-7, -1]) means
x day(s) before the last day of the month

13.2. Bean Provider’s View of the Timer Service

DRAFT Jakarta Enterprise Beans, Core Features 341

 “1st”,”2nd”, etc. applied to a day of the
week identifies a single occurrence of that day within the month.

month: one or more months within a year

Allowable values:

[1,12]

or

 \{“Jan”, “Feb”, “Mar”, ‘’Apr”, “May”, “Jun”,
“Jul”, “Aug”, “Sep”, “Oct”, “Nov”, Dec”}

dayOfWeek: one or more days within a week

Allowable values:

[0,7] or

 \{“Sun”, “Mon”, “Tue”, “Wed”, “Thu”, “Fri”,
“Sat”}

“0” and “7” both refer to Sunday

year: a particular calendar year

Allowable values: a four-digit calendar year

13.2.1.2. Attribute Syntax

Each attribute supports values expressed in one of the following forms:

Single Value

Use of a single value constrains the attribute to only one of its possible values.

13.2. Bean Provider’s View of the Timer Service

342 Jakarta Enterprise Beans, Core Features DRAFT

Examples:

second = "10"

month= "Sep"

Wild Card

The wild card " * " represents all possible values for a given attribute.

Examples:

second = "*"

dayOfWeek = "*"

List

A list constrains the attribute to two or more allowable values or ranges, with a comma used as a
separator character and a dash used to indicate an inclusive range. Each item in the list must be an
individual attribute value or a range. List items cannot themselves be lists, wild-cards, or increments.
Duplicate values are allowed, but are ignored.

Examples:

second = "10,20,30"

__

dayOfWeek = "Mon,Wed,Fri"

minute = "0-10,30,40"

13.2. Bean Provider’s View of the Timer Service

DRAFT Jakarta Enterprise Beans, Core Features 343

Range

A range constrains the attribute to an inclusive range of values, with a dash separating both ends of the
range. Each side of the range must be an individual attribute value. Members of a range cannot
themselves be lists, wild-cards, ranges, or increments. In range "x-y", if x is larger than y , the range is
equivalent to "x-max, min-y", where max is the largest value of the corresponding attribute and min is
the smallest. The range "x-x", where both range values are the same, is equivalent to the single value x.
The dayOfWeek range "0-7" is equivalent to " * ".

Examples:

second= "1-10"

dayOfWeek = "Fri-Mon"

 dayOfMonth = "27-3" (Equivalent to "27-Last,
1-3")

Increments

The forward slash constrains an attribute based on a starting point and an interval, and is used to
specify every N \{ seconds | minutes | hours } within the \{ minute | hour | day } respectively. For an
expression x/y, the attribute is constrained to every yth value within the set of allowable values
beginning at time x. The x value is inclusive. The wildcard character (*) can be used in the x position,
and is equivalent to 0. Increments are only supported within the second, minute, and hour attributes.
For the second and minute attributes, x and y must each be in the range [0,59]. For the hour attribute, x
and y must each be in the range [0,23].

 Example: _Every five minutes within the
hour_

minute = "*/5"

The following is equivalent:

minute = "0,5,10,15,20,25,30,35,40,45,50,55"

13.2. Bean Provider’s View of the Timer Service

344 Jakarta Enterprise Beans, Core Features DRAFT

 Example: Every 10 seconds within the
minute, starting at second 30

second = "30/10"

The following is equivalent:

second = "30,40,50"

Note that the set of matching increment values stops once the maximum value for that attribute is
exceeded. It does not “roll over” past the boundary.

 Example: _Every 14 minutes within the
hour, for the hours of 1 and 2 a.m._

(minute = "*/14", hour="1,2")

The following is equivalent:

(minute = "0,14,28,42,56", hour = "1,2")

Time Zone Support

Calendar-based timer expressions are evaluated in the context of the default time zone associated with
the container in which the application is executing. A calendar-based timer may optionally override
this default and associate itself with a specific time zone. If the calendar-based timer is associated with
a specific time zone, all its times are evaluated in the context of that time zone, regardless of the
default time zone in which the container is executing.

Time zones are specified as an ID String115. The set of required time zone IDs is defined by the Zone
Name(TZ) column of the public domain zoneinfo database See List of zoneinfo time zones:.

13.2.1.3. Expression Rules

The second, minute, and hour attributes have a default value of " 0 ".

The dayOfMonth, month, dayOfWeek, and year attributes have a default value of " * ".

If the dayOfMonth attribute has a non-wildcard value and the dayOfWeek attribute has a non-wildcard
value, then the timer expires when the current day matches either the dayOfMonth attribute or the

13.2. Bean Provider’s View of the Timer Service

DRAFT Jakarta Enterprise Beans, Core Features 345

#a10335
Ejb.html#a9885

dayOfWeek attribute (i.e. the current day does not need to match of both attributes).

Whitespace is ignored, except for string constants and numeric values.

All string constants (" Sun ", " Jan ", " 1st ", etc.) are case insensitive.

“5th” is the highest ordinal number allowed as the value for the dayOfMonth

Duplicate values within attributes using the list syntax are ignored.

The increments syntax is only supported within the second, minute, and hour attributes.

13.2.1.4. Examples

These examples illustrate the use of attribute syntax in conjunction with the Schedule annotation.

“Every Monday at Midnight”

@Schedule(dayOfWeek="Mon")

The following fully-qualified expression is equivalent:

 @Schedule(second="0", minute="0", hour="0",
dayOfMonth="*", month="*", dayOfWeek="Mon", year="*")

“Every Weekday morning at 3:15”

 @Schedule(minute="15", hour="3",
dayOfWeek="Mon-Fri")

“Every morning at 3:15 U.S. Eastern Time”

 @Schedule(minute="15", hour="3",
timezone="America/New_York")

“Every minute of every hour of every day”

@Schedule(minute="*", hour="*")

“Every Monday, Wednesday, and Friday at 30 seconds past noon”

13.2. Bean Provider’s View of the Timer Service

346 Jakarta Enterprise Beans, Core Features DRAFT

 @Schedule(second="30", hour="12",
dayOfWeek="Mon,Wed,Fri"

“Every five minutes within the hour”

@Schedule(minute="*/5", hour="*")

The following expression is equivalent:

@Schedule(minute="0,5,10,15,20,25,30,35,40,45,50,55", hour="*")

“The last Thursday in November at 2 p.m.”

 @Schedule(hour="14", dayOfMonth="Last Thu",
month="Nov"}

“The second to last day (one day before the last day) of each month at 1 a.m.”

@Schedule(hour="1", dayOfMonth="-1")

“Every other hour within the day starting at noon on the 2nd Tuesday of every month.”

__

 @Schedule(hour= " _12/2_ " _, dayOfMonth=_
" _2nd Tue_ ")

13.2.2. Automatic Timer Creation

The Timer Service supports the automatic creation of timers based on annotations to methods of the
bean class or the deployment descriptor. Automatically created timers are created by the container as
a result of application deployment.

The Schedule annotation can be used to automatically create a timer with a particular timeout
schedule. This annotation is applied to a method of a bean class (or superclass) that should receive the
timer callbacks associated with that schedule.

Example:

13.2. Bean Provider’s View of the Timer Service

DRAFT Jakarta Enterprise Beans, Core Features 347

the 1st of every month

@Schedule(hour="1", dayOfMonth="1")

public void generateMonthlyAccountStatements() \{ … }

Multiple automatic timers can be applied to a single timeout callback method using the Schedules
annotation.

Example:

@Schedules(

\{ @Schedule(hour="12", dayOfWeek="Mon-Thu"),

@Schedule(hour="11", dayOfWeek="Fri")

})

public void sendLunchNotification() \{ … }

A Schedule annotation can optionally specify an info string. This string can be retrieved by calling
Timer.getInfo() on the associated Timer object. If no info string is specified, the getInfo() method for a
timer created by means of the Schedule annotation returns null. 116

Example:

the 1st of every month

@Schedule(hour="1", dayOfMonth="1", info="AccountStatementTimer")

public void generateMonthlyAccountStatements(Timer t) \{

String timerInfo = t.getInfo();

...

}

By default, each Schedule annotation corresponds to a single persistent timer, regardless of the
number of JVMs across which the container is distributed.

13.2. Bean Provider’s View of the Timer Service

348 Jakarta Enterprise Beans, Core Features DRAFT

#a10336

13.2.3. Non-persistent Timers

A non-persistent timer is a timer whose lifetime is tied to the JVM in which it is created. A non-
persistent timer is considered cancelled in the event of application shutdown, container crash, or a
failure/shutdown of the JVM on which the timer was started.

Non-persistent timers can be created programmatically or created automatically using the Schedule
annotation or the deployment descriptor.

Automatically-created non-persistent timers can be specified by setting the persistent element of the
Schedule annotation to false.

Example:

@Singleton

public class CacheBean \{

Cache cache;

// Setup an automatic timer to refresh

 // the Singleton instance cache every 10
minutes

 @Schedule(minute="*/10", hour="*",
persistent=false)

public void refresh() \{

// ...

}

}

13.2. Bean Provider’s View of the Timer Service

DRAFT Jakarta Enterprise Beans, Core Features 349

13.2.4. The TimerService Interface

The TimerService object is accessed via dependency injection, through the getTimerService method of
the EJBContext interface, or through lookup in the JNDI namespace. The TimerService interface has the
following methods:

public interface javax.ejb.TimerService \{

public Timer createTimer(long duration,

java.io.Serializable info);

 public Timer createTimer(java.util.Date
expiration,

java.io.Serializable info);

 public Timer createSingleActionTimer(long
duration,

TimerConfig timerConfig);

 public Timer
createSingleActionTimer(java.util.Date expiration,

TimerConfig timerConfig);

 public Timer createTimer(long
initialDuration,

 long intervalDuration, java.io.Serializable
info);

13.2. Bean Provider’s View of the Timer Service

350 Jakarta Enterprise Beans, Core Features DRAFT

 public Timer createTimer(java.util.Date
initialExpiration,

 long intervalDuration, java.io.Serializable
info);

 public Timer createIntervalTimer(long
initialDuration,

 long intervalDuration, TimerConfig
timerConfig);

public Timer createIntervalTimer(

java.util.Date initialExpiration,

 long intervalDuration, TimerConfig
timerConfig);

 public Timer
createCalendarTimer(ScheduleExpression schedule);

 public Timer
createCalendarTimer(ScheduleExpression schedule,

TimerConfig timerConfig);

public Collection<Timer> getTimers();

public Collection<Timer> getAllTimers();

13.2. Bean Provider’s View of the Timer Service

DRAFT Jakarta Enterprise Beans, Core Features 351

}

The timer creation methods allow a timer to be programmatically created as a single-event timer, as an
interval timer, or as a calendar-based timer.

For single-event timers and interval timers, the timer expiration (initial expiration in the case of an
interval timer) may be expressed either in terms of a duration or as an absolute time. The timer
duration is expressed in terms of milliseconds. The Timer Service begins counting down the timer
duration upon timer creation.

For calendar-based timers, the schedule is expressed by a ScheduleExpression helper object passed as
a parameter to a createCalendarTimer method. The ScheduleExpression object represents a calendar
based timer expression conforming to the requirements in section See Calendar-Based Time
Expressions. The ScheduleExpression class has additional methods that further constrain the schedule
based on an optional start date and/or end date.

The bean may pass some client-specific information at timer creation to help it recognize the
significance of a timer’s expiration. This information is stored by the Timer Service and available
through the timer. The information object must be serializable. 117

By default, all timers created using the timer creation methods are persistent. A non-persistent timer
can be created by calling setPersistent(false) on a TimerConfig object passed to a timer creation
method. The TimerConfig object also supports the setting of an info object.

The timer creation methods return a Timer object that allows the timer to be cancelled or to obtain
information about the timer prior to its cancellation and/or expiration.

The getTimers method returns active timers associated with the bean. These include all active
persistent timers regardless of the number of JVMs across which the container is distributed, and
active non-persistent timers created in the same JVM as the executing method. Timers returned by this
method include both the programmatically-created timers and the automatically-created timers.

The getAllTimers method returns active timers associated with the beans in the same module in which
the caller bean is packaged. These include all active persistent timers regardless of the number of JVMs
across which the container is distributed, and active non-persistent timers created in the same JVM as
the executing method. Timers returned by this method include both the programmatically-created
timers and the automatically-created timers.

13.2.4.1. Example

This code programmatically creates a timer that expires every Saturday at 1 a.m.

ScheduleExpression schedule =

13.2. Bean Provider’s View of the Timer Service

352 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a5478
Ejb.html#a5478
#a10337

 new
ScheduleExpression().dayOfWeek("Sat").hour(1);

Timer timer = timerService.createCalendarTimer(schedule);

13.2.5. Timeout Callback Methods

The enterprise bean class of a bean that is to be registered with the Timer Service for timer callbacks
must provide one or more timeout callback methods.

There are two kinds of timeout callback methods:

timeout callback methods for timers that are programmatically created via a TimerService timer
creation method

timeout callback methods for timers that are automatically created via the Schedule annotation or the
deployment descriptor

13.2.5.1. Timeout Callbacks for Programmatic Timers

All timers created via one of the TimerService timer creation methods for a particular bean must use a
single timeout callback method. This method must either be a single method annotated with the
Timeout annotation (or a method specified as a timeout method in the deployment descriptor) or the
bean must implement the javax.ejb.TimedObject interface. The TimedObject interface has a single
method, ejbTimeout . If the bean implements the TimedObject interface, the Timeout annotation or
timeout-method deployment descriptor element can only be used to specify the ejbTimeout method. A
bean can have at most one timeout method for handling programmatic timers.118

public interface javax.ejb.TimedObject \{

public void ejbTimeout(Timer timer);

}

13.2.5.2. Timeout Callbacks for Automatically Created Timers

Each automatically-created timer is associated with a single timeout callback method. Each timeout
method is declared using either the Schedule annotation or the deployment descriptor. A timed object
can have any number of automatically created timers. The timeout callback method for the
programmatically-created timers can also be associated with the automatically-created timers.

13.2.5.3. Timeout Callback Method Requirements

A timeout callback method must have one of the two signatures below, where <METHOD> designates
the method name119.

13.2. Bean Provider’s View of the Timer Service

DRAFT Jakarta Enterprise Beans, Core Features 353

#a10338
#a10339

void <METHOD>()

void <METHOD>(Timer timer)120

A timeout callback method can have public, private, protected, or package level access. A timeout
callback method must not be declared as final or static .

Timeout callback methods must not throw application exceptions.

When a timer expires (i.e., after one of its scheduled times arrives or after the absolute time specified
has passed), the container calls the associated timeout method of the bean that was registered for the
timer. The timeout method contains the business logic that the Bean Provider supplies to handle the
timeout event. The container calls the timeout method with the timer that has expired. The Bean
Provider can use the getInfo method to retrieve the information that was supplied when the timer was
created. This information may be useful in enabling the timed object to recognize the significance of
the timer expiration.

The container interleaves calls to a timeout callback method with the calls to the business methods and
the life cycle callback methods of the bean. The time at which a timeout callback method is called may
therefore not correspond exactly to the time specified at timer creation. If multiple timers have been
created for a bean and will expire at approximately the same times, the Bean Provider must be
prepared to handle timeout callbacks that are out of sequence. The Bean Provider must be prepared to
handle extraneous calls to a timeout callback method in the event that a timer expiration is
outstanding when a call to the cancellation method has been made.

In general, a timeout callback method can perform the same operations as business methods from the
component interface or message listener methods. See Tables See Operations Allowed in the Methods
of a Stateless Session Bean, See Operations Allowed in the Methods of a Message-Driven Bean, ../
Optional/Chapters.html#UNKNOWN, and ../Optional/Chapters.html#UNKNOWN for the specification of
the operations that may be performed by a timeout callback method.

Since a timeout callback method is an internal method of the bean class, it has no client security
context. When getCallerPrincipal is called from within a timeout callback method, it returns the
container’s representation of the unauthenticated identity.

If the timed object needs to make use of the identity of the timer to recognize the significance of the
timer expiration, it may use the equals method to compare it with any other timer references it might
have outstanding.

If the timer is a single-action timer, the container removes the timer after the timeout callback method
has been successfully invoked (e.g., when the transaction that has been started for the invocation of
the timeout callback method commits). If any method is invoked on the timer after the termination of
the timeout callback method, a NoSuchObjectLocalException must be thrown.

If the timer is a calendar-based timer, the container removes the timer after the timeout callback
method has been successfully invoked (e.g., when the transaction that has been started for the
invocation of the timeout callback method commits) and there are no future timeouts corresponding to

13.2. Bean Provider’s View of the Timer Service

354 Jakarta Enterprise Beans, Core Features DRAFT

#a10340
Ejb.html#a1091
Ejb.html#a1091
Ejb.html#a1886
../Optional/Chapters.html#UNKNOWN
../Optional/Chapters.html#UNKNOWN
../Optional/Chapters.html#UNKNOWN

the timer’s schedule expression. If any method is invoked on the timer after it has been removed, the
NoSuchObjectLocalException must be thrown. If the bean invokes the getNextTimeout or
getTimeRemaining method on the timer associated with a timeout callback while within the timeout
callback, and there are no future timeouts for this calendar-based timer, the
NoMoreTimeoutsException must be thrown.

13.2.6. The Timer and TimerHandle Interfaces

The javax.ejb.Timer interface allows the caller to cancel a timer and to obtain information about the
timer.

The javax.ejb.TimerHandle interface allows the caller to obtain a serializable timer handle that may be
persisted. Timer handles are only available for persistent timers. Since timers are local objects, a
TimerHandle must not be passed through a bean’s remote business interface, remote interface or web
service interface.

The methods of these interfaces are as follows:

public interface javax.ejb.Timer \{

public void cancel();

public long getTimeRemaining();

public java.util.Date getNextTimeout();

 public javax.ejb.ScheduleExpression
getSchedule();

public javax.ejb.TimerHandle getHandle();

public java.io.Serializable getInfo();

public boolean isPersistent();

13.2. Bean Provider’s View of the Timer Service

DRAFT Jakarta Enterprise Beans, Core Features 355

public boolean isCalendarTimer();

}

public interface javax.ejb.TimerHandle extends java.io.Serializable \{

public javax.ejb.Timer getTimer();

}

13.2.7. Timer Identity

Timer instances must be compared using Timer.equals(Object obj) method. The == operator should not
be used for “object equality” of the timers.

13.2.8. Transactions

An enterprise bean typically creates a timer within the scope of a transaction. If the transaction is then
rolled back, the timer creation is rolled back.

A timer is typically cancelled within a transaction. If the transaction is rolled back, the container
rescinds the timer cancellation.

A timeout callback method on a bean with container-managed transactions must have transaction
attribute REQUIRED or REQUIRES_NEW (or Required or RequiresNew if the deployment descriptor is
used to specify the transaction attribute). If the container-managed transaction is rolled back, the
container retries the timeout.

Note that the container must start a new transaction if the REQUIRED (Required) transaction attribute
value is used. This transaction attribute value is allowed so that specification of a transaction attribute
for the timeout callback method can be defaulted.

The transaction semantics described in this section apply to both persistent and non-persistent timers.

13.3. Bean Provider’s Responsibilities
This section defines the Bean Provider’s responsibilities.

13.3.1. Enterprise Bean Class

An enterprise bean that is to be registered with the Timer Service must have a timeout callback
method. The enterprise bean class may have superclasses and/or superinterfaces. If the bean class has

13.3. Bean Provider’s Responsibilities

356 Jakarta Enterprise Beans, Core Features DRAFT

superclasses, the timeout method may be defined in the bean class, or in any of its superclasses.

13.3.2. TimerHandle

Since the TimerHandle interface extends java.io.Serializable , a client may serialize the handle. The
serialized handle may be used later to obtain a reference to the timer identified by the handle. A
TimerHandle is intended to be storable in persistent storage.

A TimerHandle must not be passed as an argument or result of an enterprise bean’s remote business
interface, remote interface, or web service method.

13.4. Container’s Responsibilities
This section describes the responsibilities of the Container Provider to support the EJB Timer Service.

13.4.1. TimerService, Timer, and TimerHandle Interfaces

The container must provide the implementation of the TimerService , Timer , and TimerHandle
interfaces.

Timer instances must not be serializable.

The container must implement a timer handle to be usable over the lifetime of the timer.

The container must provide suitable implementations of the Timer equals(Object obj) and hashCode()
methods.

13.4.2. Automatic Timers

The container must create a timer for each automatic timer specified by means of the Schedule
annotation or the deployment descriptor.

13.4.3. Timer Expiration and Timeout Callback Method

The container must call the timeout callback method after the timed duration or the absolute time
specification in the timer creation method has passed. The container must also call a timeout callback
method if a time matching the timer’s schedule expression has been reached. The Timer Service must
begin to count down the timer duration upon timer creation. The container must call a timeout
callback method with the expired Timer object, unless the method is a no-arg timeout callback method.

If container-managed transaction demarcation is used and the REQUIRED or REQUIRES_NEW
transaction attribute is specified or defaulted (Required or RequiresNew if the deployment descriptor is
used), the container must begin a new transaction prior to invoking the timeout callback method. If the
transaction fails or is rolled back, the container must retry the timeout at least once.

If the timer is a single-event timer, the container must cause the timer to no longer exist. If a

13.4. Container’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 357

javax.ejb.Timer interface method is subsequently invoked on the timer after the completion of the
timeout callback method, the container must throw the javax.ejb.NoSuchObjectLocalException .

If the Bean Provider invokes the setRollbackOnly method from within the timeout callback method, the
container must rollback the transaction in which the timeout callback method is invoked. This has the
effect of rescinding the timer expiration. The container must retry the timeout after the transaction
rollback.

Timers are persistent objects (unless explicitly created as non-persistent timers). In the event of a
container crash or container shutdown, any single-event persistent timers that have expired during
the intervening time before container restart must cause the corresponding timeout callback method
to be invoked upon restart. Any interval persistent timers or schedule based persistent timers that
have expired during the intervening time must cause the corresponding timeout callback method to be
invoked at least once upon restart.

13.4.4. Timer Cancellation

When a timer’s cancel method has been called, the container must cause the timer to no longer exist. If
a javax.ejb.Timer method is subsequently invoked on the timer, the container must throw the
javax.ejb.NoSuchObjectLocalException .

When the cancel method of an automatically created non-persistent timer has been called, the
container only causes the timer in the currently running JVM to no longer exist. The container does not
nullify the rule that creates a new non-persistent timer upon application startup.

If the transaction in which the timer cancellation occurs is rolled back, the container must restore the
duration of the timer to the duration it would have had if it had not been cancelled. If the timer would
have expired by the time that the transaction failed, the failure of the transaction should result in the
expired timer providing an expiration notification after the transaction rolls back.

13.4. Container’s Responsibilities

358 Jakarta Enterprise Beans, Core Features DRAFT

Chapter 14. Deployment Descriptor
This chapter defines the EJB deployment descriptor. Section See Overview provides an overview of the
deployment descriptor. Sections See Bean Provider’s Responsibilities through See Container Provider’s
Responsibilities describe the information in the deployment descriptor from the perspective of the EJB
roles responsible for providing the information. Section See Deployment Descriptor XML Schema
defines the deployment descriptor’s XML Schema elements that are specific to the EJB architecture.
The XML Schema elements that are common to the Java EE Platform specifications are provided in See
Java™ Platform.

Entity beans elements are described in the EJB Optional Features document See EJB 3.2.

14.1. Overview
The deployment descriptor is part of the contract between the ejb-jar and/or .war file producer and
consumer. This contract covers both the passing of enterprise beans from the Bean Provider to the
Application Assembler, and from the Application Assembler to the Deployer.

An ejb-jar file or .war file produced by the Bean Provider contains one or more enterprise beans and
typically does not contain application assembly instructions. An ejb-jar file or . war file produced by an
Application Assembler contains one or more enterprise beans, plus application assembly information
describing how the enterprise beans are combined into a single application deployment unit.

The Java EE specification defines how enterprise beans and other application components contained in
multiple such files can be assembled into an application.

The role of the deployment descriptor is to capture declarative information that is not included directly
in the enterprise beans’ code and that is intended for the consumer of the ejb-jar file or .war file.

There are two basic kinds of information in the deployment descriptor:

Enterprise beans’ structural information . Structural information describes the structure of an
enterprise bean and declares an enterprise bean’s external dependencies. Structural information may
be provided using metadata annotations in the beans’ code or in the deployment descriptor. The
structural information cannot, in general, be changed because doing so could break the enterprise
bean’s function.

Application assembly information . Application assembly information describes how the enterprise
beans in the ejb-jar file or .war file are composed into a larger application deployment unit. Providing
assembly information—whether in metadata annotations or in the deployment descriptor—is optional
for the ejb-jar file or .war file producer. Assembly level information can be changed without breaking
the enterprise bean’s function, although doing so may alter the behavior of an assembled application.

14.1. Overview

DRAFT Jakarta Enterprise Beans, Core Features 359

Ejb.html#a5807
Ejb.html#a5815
Ejb.html#a5907
Ejb.html#a5907
Ejb.html#a5910
Ejb.html#a9861
Ejb.html#a9861
Ejb.html#a9890

14.2. Bean Provider’s Responsibilities
The Bean Provider is responsible for providing in the deployment descriptor the following structural
information for each enterprise bean if this information has not be provided in metadata annotations
or is to be defaulted.

The Bean Provider uses the enterprise-beans element to list the enterprise beans in the ejb-jar file or
.war file.

The following annotations are component-defining annotations and cannot be
overridden by the deployment descriptor:

Stateless

Stateful

Singleton

MessageDriven

The Bean Provider must provide the following information for each enterprise bean:

Enterprise bean’s name. A logical name is assigned to each enterprise bean in the ejb-jar file or .war
file. The Bean Provider can specify the enterprise bean’s name in the ejb-name element. If the
enterprise bean’s name is not explicitly specified in metadata annotations or in the deployment
descriptor, it defaults to the unqualified name of the bean class.

Enterprise bean’s class. If the bean class has not been annotated with a component-defining
annotation, the Bean Provider must use the ejb-class element of the session or message-driven
deployment descriptor element to specify the fully-qualified name of the Java class that implements
the enterprise bean’s business methods. The Bean Provider specifies the enterprise bean’s class name
in the ejb-class element.

Enterprise bean’s local business interface. If the bean class has a local business interface and neither
implements the business interface nor specifies it as a local business interface using metadata
annotations on the bean class, the Bean Provider must specify the fully-qualified name of the
enterprise bean’s local business interface in the business-local element.

Enterprise bean’s remote business interface. If the bean class has a remote business interface and
neither implements nor specifies it as a remote business interface using metadata annotations on the
bean class, the Bean Provider must specify the fully-qualified name of the enterprise bean’s remote
business interface in the business-remote element.

14.2. Bean Provider’s Responsibilities

360 Jakarta Enterprise Beans, Core Features DRAFT

Enterprise bean’s remote home interface. If the bean class has a remote home interface, and the
remote home interface has not been specified using metadata annotations, the Bean Provider must
specify the fully-qualified name of the enterprise bean’s remote home interface in the home element.

Enterprise bean’s remote component interface. If the bean class has a remote component interface,
and the remote home interface has not been specified using metadata annotations, the Bean Provider
must specify the fully-qualified name of the enterprise bean’s remote component interface in the
remote element.

Enterprise bean’s local home interface. If the bean class has a local home interface, and the local home
interface has not been specified using metadata annotations, the Bean Provider must specify the fully-
qualified name of the enterprise bean’s local home interface in the local-home element.

Enterprise bean’s local component interface. If the bean class has a local component interface, and the
local home interface has not been specified using metadata annotations, the Bean Provider must
specify the fully-qualified name of the enterprise bean’s local component interface in the local
element.

Enterprise bean’s no-interface view. If the bean class exposes a no-interface view and the bean exposes
at least one other client view (local, remote, 2.x local home, 2.x remote home, web service), or if the
bean class does not have an empty implements clause and does not specify no-interface view using
metadata annotations on the bean class, or if the metadata-complete attribute has been set to true , the
Bean Provider must specify the local-bean element.

 _Enterprise bean’s web service endpoint
interface._ If the bean class has a web service endpoint interface, and
the interface has not been specified using metadata annotations on the
bean class, the Bean Provider must specify the fully-qualified name of
the enterprise bean’s web service endpoint interface in the
service-endpoint element. This element may only be used for stateless
session beans.

Enterprise bean’s type. The enterprise bean types are: session, and message-driven. The Bean Provider
must use the appropriate session, or message-driven element to declare the enterprise bean’s structural
information if a component-defining annotation has not been used for this purpose. If the bean’s type
has been specified by means of a component-defining annotation, its type cannot be overridden by
means of the deployment descriptor. The bean’s type (and its session type), if specified, must be the
same as that specified in annotations.

 Re-entrancy indication
. Session beans and message-driven beans are
never re-entrant.

Session bean’s state management type. If the enterprise bean is a session bean and the bean class has

14.2. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 361

not been annotated with the Stateful , Stateless , or Singleton annotation, the Bean Provider must use
the session-type element to declare whether the session bean is a stateful, stateless, or singleton session
bean.

Session or message-driven bean’s transaction demarcation type. If the enterprise bean is a session
bean or message-driven bean, the Bean Provider may use the transaction-type element to declare
whether transaction demarcation is performed by the enterprise bean or by the container. If the
neither the TransactionType annotation is used nor the transaction-type deployment descriptor
element, the bean will have container managed transaction demarcation.

Session bean’s concurrency management type. If the enterprise bean is a singleton session bean, the
Bean Provider may use the concurrency-management-type element to declare whether concurrency
management is handled by the container or is performed by the Bean Provider121. If neither the
ConcurrencyManagement annotation is used nor the concurrency-management-type deployment
descriptor element, the singleton session bean will have container-managed concurrency.

Environment entries. The Bean Provider must declare any enterprise bean’s environment entries that
have not been defined by means of metadata annotations, as specified in Subsection See Bean
Provider’s Responsibilities.

Resource manager connection factory references. The Bean Provider must declare any enterprise
bean’s resource manager connection factory references that have not been defined by means of
metadata annotations, as specified in Subsection See Bean Provider’s Responsibilities.

 Resource environment references
. The Bean Provider must declare any
enterprise bean’s references to administered objects that are associated
with resources and that have not been defined by means of metadata
annotations, as specified in Subsection link:Ejb.html#a4344[See
Bean Provider’s Responsibilities].

EJB references. The Bean Provider must declare any enterprise bean’s references to the remote home
or remote business view of other enterprise beans that have not been defined by means of metadata
annotations, as specified in Subsection See Bean Provider’s Responsibilities.

EJB local references. The Bean Provider must declare any enterprise bean’s references to the local
home or local business or no-interface view of other enterprise beans that have not been defined by
means of metadata annotations, as specified in Subsection See Bean Provider’s Responsibilities.

 Web service references . The Bean Provider
must declare any enterprise bean’s references to web service interfaces
that have not been defined by means of metadata annotations, as
specified in Subsection link:Ejb.html#a4154[See Web Service
References].

14.2. Bean Provider’s Responsibilities

362 Jakarta Enterprise Beans, Core Features DRAFT

#a10341
Ejb.html#a3682
Ejb.html#a3682
Ejb.html#a4164
Ejb.html#a3915
Ejb.html#a3915

 Persistence unit references . The Bean
Provider must declare any enterprise bean’s references to an entity
manager factory for a persistence unit that have not been defined by
means of metadata annotations, as specified in Subsection
link:Ejb.html#a4533[See Persistence Unit References].

 Persistence context references . The Bean
Provider must declare any enterprise bean’s references to an entity
manager for a persistence context that have not been defined by means of
metadata annotations, as specified in Subsection
link:Ejb.html#a4671[See Persistence Context References].

 Message destination references . The Bean
Provider must declare any enterprise bean’s references to message
destinations that have not been defined by means of metadata
annotations, as specified in Subsection link:Ejb.html#a4373[See
Bean Provider’s Responsibilities].

Security role references. The Bean Provider must declare any enterprise bean’s references to security
roles that have not been defined by means of metadata annotations, as specified in Subsection See
Declaration of Security Roles Referenced from the Bean’s Code.

 _Message-driven bean’s configuration
properties. The Bean Provider may provide input to the Deployer as to
how a message-driven bean should be configured upon activation in its
operational environment. Activation configuration properties for a JMS
message-driven bean include information about a bean’s intended
destination type, its message selector, and its acknowledgement mode.
Other bean types may make use of different properties. See
link:Ejb.html#a9863[See Java EE™ Connector Architecture, version
1.7 (Connector). http://jcp.org/en/jsr/detail?id=322.]._

 Message-driven bean’s destination. The
Bean Provider may provide advice to the Application Assembler as to the
destination type to which a message-driven
bean should be assigned when linking message destinations

14.2. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 363

Ejb.html#a5071
Ejb.html#a5071

 Interceptors. The Bean Provider must
declare any interceptor classes and methods that have not been declared
by means of metadata annotations.

Schedule-based timers. The Bean Provider must declare any automatic schedule-based timers that
have not been declared by means of metadata annotations.

Asynchronous methods. The Bean Provider must declare any asynchronous business methods that
have not been designated as asynchronous by means of metadata annotions.

 _Singleton session bean initialization
ordering dependencies._ The Bean Provider may provide advice to the
Application Assembler as to the initialization ordering dependencies
among singleton session beans.

The deployment descriptor produced by the Bean Provider must conform to the XML Schema
definition in Section See Deployment Descriptor XML Schema or to the XML Schema or DTD definition
from a previous version of this specification. The content of the deployment descriptor must conform
to the semantics rules specified in the XML Schema or DTD comments and elsewhere in this
specification.

14.3. Application Assembler’s Responsibility
The Application Assembler assembles enterprise beans into deployment units. The Application
Assembler’s input is one or more enterprise beans, un-assembled or contained in one or more ejb-jar
and/or .war files provided by one or more Bean Providers. All of the input could be combined into a
single output ejb-jar file or .war file, or could be be split into multiple output ejb-jar and/or .war files.
Each output ejb-jar file or .war file is either a deployment unit intended for the Deployer or a partially
assembled application that is intended for another Application Assembler.

The Bean Provider and Application Assembler may be the same person or organization. In such a case,
the person or organization performs the responsibilities described both in this and the previous
sections.

The Application Assembler may modify the following information that was specified by the Bean
Provider:

Values of environment entries. The Application Assembler may change existing values and/or define
new values of environment properties.

Description fields. The Application Assembler may change existing or create new description elements.

14.3. Application Assembler’s Responsibility

364 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a5910

 Message-driven bean message selector . The
Application Assembler may further restrict, but not replace, the value
of the _messageSelector_
activation-config-property element of a JMS message-driven
bean—whether this was defined in metadata annotations or the deployment
descriptor.

Timer schedule attributes. The Application Assembler may override timer attributes, except for the
method to which a timer’s timeouts have been assigned.

In general, the Application Assembler should never modify any of the following.

Enterprise bean’s abstract schema name. The Application Assembler should not change the enterprise
bean’s name defined in the abstract-schema-name element since EJB QL queries may depend on the
content of this element.

Relationship role source element. The Application Assembler should not change the value of an ejb-
name element in the relationship-role-source element.

If any of these elements must be modified by the Application Assembler in order to resolve name
clashes during the merging of ejb-jar and/or .war files, the Application Assembler must also modify all
ejb-ql query strings that depend on the value of the modified element(s).

The Application Assembler must not, in general, modify any other information listed in Section See
Bean Provider’s Responsibilities that was provided in the input ejb-jar file or .war file.

The Application Assembler may, but is not required to, specify any of the following application
assembly information:

Binding of enterprise bean references. The Application Assembler may link an enterprise bean
reference to another enterprise bean in the ejb-jar file or .war file or in an ejb-jar file in the same Java
EE application unit. The Application Assembler creates the link by adding the ejb-link element to the
referencing bean. The Application Assembler uses the ejb-name of the referenced bean for the link. If
there are multiple enterprise beans with the same ejb-name , the Application Assembler uses the path
name specifying the location of the ejb-jar file that contains the referenced component. The path name
is relative to the referencing ejb-jar file or . war file. The Application Assembler appends the ejb-name
of the referenced bean to the path name separated by # . This allows multiple beans with the same
name to be uniquely identified.

Linking of message destination references. The Application Assembler may link message consumers
and producers through common message destinations specified in the ejb-jar file or .war file or in the
same Java EE application unit. The Application Assembler creates the link by adding the message-
destination-link element to the referencing bean.

Security roles. The Application Assembler may define one or more security roles. The security roles
define the recommended security roles for the clients of the enterprise beans. The Application

14.3. Application Assembler’s Responsibility

DRAFT Jakarta Enterprise Beans, Core Features 365

Ejb.html#a5815
Ejb.html#a5815

Assembler defines the security roles using the security-role elements.

Method permissions. The Application Assembler may define method permissions. Method permission
is a binary relation between the security roles and the methods of the business interfaces, home
interfaces, component interfaces, and/or web service endpoints of the enterprise beans. The
Application Assembler defines method permissions using the method-permission elements. The
Application Assembler may augment or ovrride method permissions defined by the Bean
Provider—whether in metadata annotations or in the deployment descriptor.

Singleton session bean initialization ordering. The Application Assembler may define or override the
depends-on initialization ordering metadata for a singleton session bean.

Stateful timeout. The Application Assembler may define or override the stateful timeout.

Singleton session bean startup. The Application Assembler may override the eager startup designation
of a singleton session bean.

Access timeouts. The Application Assembler may override the access timeout values for methods
governed by container-managed concurrency semantics of stateful and singleton session beans.

Linking of security role references. If the Application Assembler defines security roles in the
deployment descriptor, the Application Assembler may link the security role references declared by
the Bean Provider to the security roles. The Application Assembler defines these links using the role-
link element.

 Security identity . The Application
Assembler may specify whether the caller’s
security identity should be used for the
execution of the methods of an enterprise bean or whether a specific
run-as security identity should be used. The Application Assembler may
override a security identity defined by the Bean Provider—whether in
metadata annotations or in the deployment descriptor

Transaction attributes. The Application Assembler may define the value of the transaction attributes
for the methods of the business interface, home interface, component interface, no-interface view, web
service endpoint, and TimedObject interface of the enterprise beans that require container-managed
transaction demarcation. All session and message-driven beans declared by the Bean Provider as
transaction-type Container require container-managed transaction demarcation. The Application
Assembler uses the container-transaction elements to declare the transaction attributes.

 Interceptors . The Application Assembler
may override, augment, and/or reorder the interceptor methods defined by
the Bean Provider—whether in metadata annotations or in the deployment
descriptor.

14.3. Application Assembler’s Responsibility

366 Jakarta Enterprise Beans, Core Features DRAFT

If an input ejb-jar file or .war file contains application assembly information, the Application
Assembler is allowed to change the application assembly information supplied in the input file. (This
could happen when the input file was produced by another Application Assembler.)

The deployment descriptor produced by the Bean Provider and/or the Application Assembler must
conform to the XML Schema definition in Section See Deployment Descriptor XML Schema or the XML
Schema or DTD definition from a previous version of this specification. The content of the deployment
descriptor must conform to the semantics rules specified in the XML Schema or DTD comments and
elsewhere in this specification.

14.4. Container Provider’s Responsibilities
The Container Provider provides tools that read and import the information contained in the XML
deployment descriptor.

All EJB 3.2 implementations must support EJB 3.1, EJB 3.0, EJB 2.1, EJB 2.0, and EJB 1.1 as well as EJB 3.1
deployment descriptors. The definitions of the EJB 3.1 EJB 3.0, EJB 2.1, EJB 2.0, and EJB 1.1 deployment
descriptors can be found in the Enterprise JavaBeans 3.1 See Enterprise and earlier specifications.

14.5. Deployment Descriptor XML Schema
This section provides the XML Schema for the EJB deployment descriptor. The comments in the XML
Schema specify additional requirements for the syntax and semantics that cannot be easily expressed
by the XML Schema mechanism.

The content of the XML elements is in general case sensitive (i.e., unless stated otherwise). This means,
for example, that

<transaction-type>Container</transaction-type>

must be used, rather than:

<transaction-type>container</transaction-type>.

All valid ejb-jar deployment descriptors must conform to the XML Schema definition below or to the
XML Schema or DTD definition from a previous version of this specification.

<?xml version=”1.0” encoding=”UTF-8”?>

<xsd:schema xmlns=”http://www.w3.org/2001/XMLSchema”

targetNamespace=”http://xmlns.jcp.org/xml/ns/javaee”

xmlns:javaee=”http://xmlns.jcp.org/xml/ns/javaee”

14.4. Container Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 367

Ejb.html#a5910
Ejb.html#a9891

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

elementFormDefault=”qualified”

attributeFormDefault=”unqualified”

version=”3.2”>

<xsd:annotation>

<xsd:documentation>

 DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR
THIS HEADER.

 Copyright (c) 2009-2013 Oracle and/or its
affiliates. All rights reserved.

 The contents of this file are subject to the
terms of either the GNU

 General Public License Version 2 only
(“GPL”) or the Common Development

 and Distribution License(“CDDL”)
(collectively, the “License”). You

 may not use this file except in compliance
with the License. You can

14.5. Deployment Descriptor XML Schema

368 Jakarta Enterprise Beans, Core Features DRAFT

obtain a copy of the License at

https://glassfish.dev.java.net/public/CDDL+GPL_1_1.html

 or packager/legal/LICENSE.txt. See the
License for the specific

 language governing permissions and
limitations under the License.

 When distributing the software, include this
License Header Notice in each file and include the License file at
packager/legal/LICENSE.txt.

GPL Classpath Exception:

 Oracle designates this particular file as
subject to the “Classpath”

 exception as provided by Oracle in the GPL
Version 2 section of the License file that accompanied this code.

Modifications:

 If applicable, add the following below the
License Header, with the fields

 enclosed by brackets [] replaced by your own
identifying information:

 “Portions Copyright [year] [name of
copyright owner]”

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 369

https://glassfish.dev.java.net/public/CDDL+GPL_1_1.html

Contributor(s):

 If you wish your version of this file to be
governed by only the CDDL or

only the GPL Version 2, indicate your decision by adding “[Contributor]

 elects to include this software in this
distribution under the [CDDL or GPL

 Version 2] license.” If you don’t indicate a
single choice of license, a recipient has the option to distribute your
version of this file under

 either the CDDL, the GPL Version 2 or to
extend the choice of license to

 its licensees as provided above. However, if
you add GPL Version 2 code

 and therefore, elected the GPL Version 2
license, then the option applies only if the new code is made subject to
such option by the copyright holder.

</xsd:documentation>

</xsd:annotation>

<xsd:annotation>

<xsd:documentation>

14.5. Deployment Descriptor XML Schema

370 Jakarta Enterprise Beans, Core Features DRAFT

<![CDATA[[

 This is the XML Schema for the EJB 3.2
deployment descriptor.

All EJB deployment descriptors must indicate

the schema by using the Java EE namespace:

http://xmlns.jcp.org/xml/ns/javaee

 and by indicating the version of the schema
by

using the version element as shown below:

 <ejb-jar
xmlns=”http://xmlns.jcp.org/xml/ns/javaee”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/ejb-jar_3_2.xsd”

version=”3.2”>

...

</ejb-jar>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 371

http://xmlns.jcp.org/xml/ns/javaee/ejb-jar_3_2.xsd”

 The instance documents may indicate the
published version of

 the schema using the xsi:schemaLocation
attribute for the

 Java EE namespace with the following
location:

http://xmlns.jcp.org/xml/ns/javaee/ejb-jar_3_2.xsd

]]>

</xsd:documentation>

</xsd:annotation>

<xsd:annotation>

<xsd:documentation>

 The following conventions apply to all Java
EE

 deployment descriptor elements unless
indicated otherwise.

• In elements that specify a pathname to a file within the

 same JAR file, relative filenames (i.e.,
those not

14.5. Deployment Descriptor XML Schema

372 Jakarta Enterprise Beans, Core Features DRAFT

http://xmlns.jcp.org/xml/ns/javaee/ejb-jar_3_2.xsd

 starting with “/”) are considered relative
to the root of

 the JAR file’s namespace. Absolute filenames
(i.e., those

 starting with “/”) also specify names in the
root of the

 JAR file’s namespace. In general, relative
names are

 preferred. The exception is .war files where
absolute

 names are preferred for consistency with the
Servlet API.

</xsd:documentation>

</xsd:annotation>

<xsd:include schemaLocation=”javaee_7.xsd”/>

<!-- ** -→

<xsd:element name=”ejb-jar”

type=”javaee:ejb-jarType”>

<xsd:annotation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 373

<xsd:documentation>

 This is the root of the ejb-jar deployment
descriptor.

</xsd:documentation>

</xsd:annotation>

<xsd:key name=”ejb-name-key”>

<xsd:annotation>

<xsd:documentation>

 The ejb-name element contains the name of an
enterprise

 bean. The name must be unique within the
ejb-jar file or

.war file.

</xsd:documentation>

</xsd:annotation>

 <xsd:selector
xpath=”javaee:enterprise-beans/*”/>

14.5. Deployment Descriptor XML Schema

374 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:field xpath=”javaee:ejb-name”/>

</xsd:key>

<xsd:keyref name=”ejb-name-references”

refer=”javaee:ejb-name-key”>

<xsd:annotation>

<xsd:documentation>

The keyref indicates the references from

 relationship-role-source must be to a
specific ejb-name

 defined within the scope of enterprise-beans
element.

</xsd:documentation>

</xsd:annotation>

<xsd:selector xpath=

”.//javaee:ejb-relationship-role/javaee:relationship-role-source”/>

<xsd:field xpath=”javaee:ejb-name”/>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 375

</xsd:keyref>

<xsd:key name=”role-name-key”>

<xsd:annotation>

<xsd:documentation>

 A role-name-key is specified to allow the
references

from the security-role-refs.

</xsd:documentation>

</xsd:annotation>

 <xsd:selector
xpath=”javaee:assembly-descriptor/javaee:security-role”/>

<xsd:field xpath=”javaee:role-name”/>

</xsd:key>

<xsd:keyref name=”role-name-references”

refer=”javaee:role-name-key”>

<xsd:annotation>

14.5. Deployment Descriptor XML Schema

376 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:documentation>

The keyref indicates the references from

security-role-ref to a specified role-name.

</xsd:documentation>

</xsd:annotation>

<xsd:selector xpath=

”javaee:enterprise-beans/*/javaee:security-role-ref”/>

<xsd:field xpath=”javaee:role-link”/>

</xsd:keyref>

</xsd:element>

<!-- ** -→

<xsd:complexType name=”access-timeoutType”>

<xsd:annotation>

<xsd:documentation>

 The access-timeoutType represents the
maximum amount of

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 377

 time (in a given time unit) that the
container should wait for

 a concurrency lock before throwing a timeout
exception to the

client.

 A timeout value of 0 means concurrent access
is not permitted.

 A timeout value of -1 means wait
indefinitely to acquire a lock.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”timeout”

type=”javaee:xsdIntegerType”/>

<xsd:element name=”unit”

type=”javaee:time-unit-typeType”/>

</xsd:sequence>

14.5. Deployment Descriptor XML Schema

378 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”async-methodType”>

<xsd:annotation>

<xsd:documentation>

 The async-methodType element specifies that
a session

 bean method has asynchronous invocation
semantics.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”method-name”

type=”javaee:string”/>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 379

<xsd:element name=”method-params”

type=”javaee:method-paramsType”

minOccurs=”0”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

 <xsd:complexType
name=”activation-configType”>

<xsd:annotation>

<xsd:documentation>

 The activation-configType defines
information about the

 expected configuration properties of the
message-driven bean

14.5. Deployment Descriptor XML Schema

380 Jakarta Enterprise Beans, Core Features DRAFT

 in its operational environment. This may
include information

 about message acknowledgement, message
selector, expected

 destination type, destination or connection
factory lookup

string, subscription name, etc.

 The configuration information is expressed
in terms of

name/value configuration properties.

 The properties that are recognized for a
particular

 message-driven bean are determined by the
messaging type.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”description”

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 381

type=”javaee:descriptionType”

minOccurs=”0”

maxOccurs=”unbounded”/>

 <xsd:element
name=”activation-config-property”

type=”javaee:activation-config-propertyType”

maxOccurs=”unbounded”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

 <xsd:complexType
name=”activation-config-propertyType”>

<xsd:annotation>

<xsd:documentation>

14.5. Deployment Descriptor XML Schema

382 Jakarta Enterprise Beans, Core Features DRAFT

 The activation-config-propertyType contains
a name/value

 configuration property pair for a
message-driven bean.

 The properties that are recognized for a
particular

 message-driven bean are determined by the
messaging type.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

 <xsd:element
name=”activation-config-property-name”

type=”javaee:xsdStringType”>

<xsd:annotation>

<xsd:documentation>

 The activation-config-property-name element
contains

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 383

 the name for an activation configuration
property of

a message-driven bean.

 For JMS message-driven beans, the following
property

names are recognized: acknowledgeMode,

 messageSelector, destinationType,
subscriptionDurability,

 destinationLookup, connectionFactoryLookup,
subscriptionName,

and clientId.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

 <xsd:element
name=”activation-config-property-value”

type=”javaee:xsdStringType”>

<xsd:annotation>

14.5. Deployment Descriptor XML Schema

384 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:documentation>

The activation-config-property-value element

 contains the value for an activation
configuration

property of a message-driven bean.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”around-invokeType”>

<xsd:annotation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 385

<xsd:documentation>

 The around-invoke type specifies a method on
a

 class to be called during the around invoke
portion of an

 ejb invocation. Note that each class may
have only one

 around invoke method and that the method may
not be

overloaded.

If the class element is missing then

 the class defining the callback is assumed
to be the

 interceptor class or component class in
scope at the

 location in the descriptor in which the
around invoke

definition appears.

</xsd:documentation>

14.5. Deployment Descriptor XML Schema

386 Jakarta Enterprise Beans, Core Features DRAFT

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”class”

type=”javaee:fully-qualified-classType”

minOccurs=”0”/>

<xsd:element name=”method-name”

type=”javaee:java-identifierType”/>

</xsd:sequence>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”around-timeoutType”>

<xsd:annotation>

<xsd:documentation>

 The around-timeout type specifies a method
on a

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 387

 class to be called during the around-timeout
portion of

 a timer timeout callback. Note that each
class may have

 only one around-timeout method and that the
method may not

be overloaded.

If the class element is missing then

 the class defining the callback is assumed
to be the

 interceptor class or component class in
scope at the

 location in the descriptor in which the
around-timeout

definition appears.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

14.5. Deployment Descriptor XML Schema

388 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:element name=”class”

type=”javaee:fully-qualified-classType”

minOccurs=”0”/>

<xsd:element name=”method-name”

type=”javaee:java-identifierType”/>

</xsd:sequence>

</xsd:complexType>

<!-- ** -→

 <xsd:complexType
name=”assembly-descriptorType”>

<xsd:annotation>

<xsd:documentation>

The assembly-descriptorType defines

application-assembly information.

 The application-assembly information
consists of the

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 389

 following parts: the definition of security
roles, the

 definition of method permissions, the
definition of

 transaction attributes for enterprise beans
with

 container-managed transaction demarcation,
the definition

of interceptor bindings, a list of

 methods to be excluded from being invoked,
and a list of

 exception types that should be treated as
application exceptions.

 All the parts are optional in the sense that
they are

 omitted if the lists represented by them are
empty.

 Providing an assembly-descriptor in the
deployment

 descriptor is optional for the ejb-jar file
or .war file producer.

14.5. Deployment Descriptor XML Schema

390 Jakarta Enterprise Beans, Core Features DRAFT

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”security-role”

type=”javaee:security-roleType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”method-permission”

type=”javaee:method-permissionType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”container-transaction”

type=”javaee:container-transactionType”

minOccurs=”0”

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 391

maxOccurs=”unbounded”/>

<xsd:element name=”interceptor-binding”

type=”javaee:interceptor-bindingType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”message-destination”

type=”javaee:message-destinationType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”exclude-list”

type=”javaee:exclude-listType”

minOccurs=”0”/>

<xsd:element name=”application-exception”

type=”javaee:application-exceptionType”

14.5. Deployment Descriptor XML Schema

392 Jakarta Enterprise Beans, Core Features DRAFT

minOccurs=”0”

maxOccurs=”unbounded”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”cmp-fieldType”>

<xsd:annotation>

<xsd:documentation>

 The cmp-fieldType describes a
container-managed field. The

 cmp-fieldType contains an optional
description of the field,

and the name of the field.

</xsd:documentation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 393

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”description”

type=”javaee:descriptionType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”field-name”

type=”javaee:java-identifierType”>

<xsd:annotation>

<xsd:documentation>

 The field-name element specifies the name of
a

container managed field.

 The name of the cmp-field of an entity bean
with

cmp-version 2.x must begin with a lowercase

14.5. Deployment Descriptor XML Schema

394 Jakarta Enterprise Beans, Core Features DRAFT

 letter. This field is accessed by methods
whose

 names consists of the name of the field
specified by

 field-name in which the first letter is
uppercased,

prefixed by “get” or “set”.

 The name of the cmp-field of an entity bean
with

 cmp-version 1.x must denote a public field
of the

 enterprise bean class or one of its
superclasses.

 Support for entity beans is optional as of
EJB 3.2.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

</xsd:sequence>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 395

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”cmp-versionType”>

<xsd:annotation>

<xsd:documentation>

 The cmp-versionType specifies the version of
an entity bean

 with container-managed persistence. It is
used by

cmp-version elements.

The value must be one of the two following:

1.x

2.x

 Support for entity beans is optional as of
EJB 3.2.

14.5. Deployment Descriptor XML Schema

396 Jakarta Enterprise Beans, Core Features DRAFT

</xsd:documentation>

</xsd:annotation>

<xsd:simpleContent>

<xsd:restriction base=”javaee:string”>

<xsd:enumeration value=”1.x”/>

<xsd:enumeration value=”2.x”/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”cmr-fieldType”>

<xsd:annotation>

<xsd:documentation>

 The cmr-fieldType describes the Bean
Provider’s view of

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 397

 a relationship. It consists of an optional
description, and

 the name and the class type of a field in
the source of a

 role of a relationship. The cmr-field-name
element

 corresponds to the name used for the get and
set accessor

 methods for the relationship. The
cmr-field-type element is

 used only for collection-valued cmr-fields.
It specifies the

type of the collection that is used.

 Support for entity beans is optional as of
EJB 3.2.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”description”

14.5. Deployment Descriptor XML Schema

398 Jakarta Enterprise Beans, Core Features DRAFT

type=”javaee:descriptionType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”cmr-field-name”

type=”javaee:string”>

<xsd:annotation>

<xsd:documentation>

 The cmr-field-name element specifies the
name of a

 logical relationship field in the entity
bean

 class. The name of the cmr-field must begin
with a

 lowercase letter. This field is accessed by
methods

whose names consist of the name of the field

 specified by cmr-field-name in which the
first

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 399

 letter is uppercased, prefixed by “get” or
“set”.

 Support for entity beans is optional as of
EJB 3.2.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name=”cmr-field-type”

type=”javaee:cmr-field-typeType”

minOccurs=”0”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”cmr-field-typeType”>

14.5. Deployment Descriptor XML Schema

400 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:annotation>

<xsd:documentation>

 The cmr-field-type element specifies the
class of a

 collection-valued logical relationship field
in the entity

 bean class. The value of an element using
cmr-field-typeType

 must be either: java.util.Collection or
java.util.Set.

</xsd:documentation>

</xsd:annotation>

<xsd:simpleContent>

<xsd:restriction base=”javaee:string”>

 <xsd:enumeration
value=”java.util.Collection”/>

<xsd:enumeration value=”java.util.Set”/>

</xsd:restriction>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 401

</xsd:simpleContent>

</xsd:complexType>

<!-- ** -→

 <xsd:complexType
name=”concurrency-management-typeType”>

<xsd:annotation>

<xsd:documentation>

 The concurrency-management-typeType
specifies the way concurrency

 is managed for a singleton or stateful
session bean.

 The concurrency management type must be one
of the following:

Bean

Container

 Bean managed concurrency can only be
specified for a singleton bean.

</xsd:documentation>

14.5. Deployment Descriptor XML Schema

402 Jakarta Enterprise Beans, Core Features DRAFT

</xsd:annotation>

<xsd:simpleContent>

<xsd:restriction base=”javaee:string”>

<xsd:enumeration value=”Bean”/>

<xsd:enumeration value=”Container”/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

<!-- ** -→

 <xsd:complexType
name=”concurrent-lock-typeType”>

<xsd:annotation>

<xsd:documentation>

 The concurrent-lock-typeType specifies how
the container must

 manage concurrent access to a method of a
Singleton bean

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 403

with container-managed concurrency.

 The container managed concurrency lock type
must be one

of the following :

Read

Write

</xsd:documentation>

</xsd:annotation>

<xsd:simpleContent>

<xsd:restriction base=”javaee:string”>

<xsd:enumeration value=”Read”/>

<xsd:enumeration value=”Write”/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

14.5. Deployment Descriptor XML Schema

404 Jakarta Enterprise Beans, Core Features DRAFT

<!-- ** -→

 <xsd:complexType
name=”concurrent-methodType”>

<xsd:annotation>

<xsd:documentation>

 The concurrent-methodType specifies
information about a method

 of a bean with container managed
concurrency.

 The optional lock element specifies the kind
of concurrency

lock asssociated with the method.

 The optional access-timeout element
specifies the amount of

 time (in a given time unit) the container
should wait for a

 concurrency lock before throwing an
exception to the client.

</xsd:documentation>

</xsd:annotation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 405

<xsd:sequence>

<xsd:element name=”method”

type=”javaee:named-methodType”/>

<xsd:element name=”lock”

type=”javaee:concurrent-lock-typeType”

minOccurs=”0”/>

<xsd:element name=”access-timeout”

type=”javaee:access-timeoutType”

minOccurs=”0”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

14.5. Deployment Descriptor XML Schema

406 Jakarta Enterprise Beans, Core Features DRAFT

 <xsd:complexType
name=”container-transactionType”>

<xsd:annotation>

<xsd:documentation>

 The container-transactionType specifies how
the container

 must manage transaction scopes for the
enterprise bean’s

 method invocations. It defines an optional
description, a

 list of method elements, and a transaction
attribute. The

 transaction attribute is to be applied to
all the specified

methods.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 407

<xsd:element name=”description”

type=”javaee:descriptionType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”method”

type=”javaee:methodType”

maxOccurs=”unbounded”/>

<xsd:element name=”trans-attribute”

type=”javaee:trans-attributeType”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”depends-onType”>

14.5. Deployment Descriptor XML Schema

408 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:annotation>

<xsd:documentation>

 The depends-onType is used to express
initialization

 ordering dependencies between Singleton
components.

 The depends-onType specifies the names of
one or more

 Singleton beans in the same application as
the referring

 Singleton, each of which must be initialized
before

the referring bean.

 Each dependent bean is expressed using
ejb-link syntax.

 The order in which dependent beans are
initialized at

 runtime is not guaranteed to match the order
in which

they are listed.

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 409

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”ejb-name”

type=”javaee:ejb-linkType”

minOccurs=”1”

maxOccurs=”unbounded”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”ejb-classType”>

<xsd:annotation>

<xsd:documentation>

14.5. Deployment Descriptor XML Schema

410 Jakarta Enterprise Beans, Core Features DRAFT

<![CDATA[[

 The ejb-classType contains the
fully-qualified name of the

 enterprise bean’s class. It is used by
ejb-class elements.

Example:

<ejb-class>com.wombat.empl.EmployeeServiceBean</ejb-class>

]]>

</xsd:documentation>

</xsd:annotation>

<xsd:simpleContent>

 <xsd:restriction
base=”javaee:fully-qualified-classType”/>

</xsd:simpleContent>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”ejb-jarType”>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 411

<xsd:annotation>

<xsd:documentation>

 The ejb-jarType defines the root element of
the EJB

deployment descriptor. It contains

• an optional description of the ejb-jar file

• an optional display name

• an optional icon that contains a small and a large

icon file name

• an optional module name. Only applicable to

 stand-alone ejb-jars or ejb-jars packaged in
an ear.

 Ignored if specified for an ejb-jar.xml
within a .war file.

 In that case, standard .war file module-name
rules apply.

• structural information about all included

 enterprise beans that is not specified
through

annotations

• structural information about interceptor classes

14.5. Deployment Descriptor XML Schema

412 Jakarta Enterprise Beans, Core Features DRAFT

• a descriptor for container managed relationships,

if any.

• an optional application-assembly descriptor

• an optional name of an ejb-client-jar file for the

ejb-jar.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”module-name”

type=”javaee:string”

minOccurs=”0”/>

<xsd:group ref=”javaee:descriptionGroup”/>

<xsd:element name=”enterprise-beans”

type=”javaee:enterprise-beansType”

minOccurs=”0”/>

<xsd:element name=”interceptors”

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 413

type=”javaee:interceptorsType”

minOccurs=”0”/>

<xsd:element name=”relationships”

type=”javaee:relationshipsType”

minOccurs=”0”>

 <xsd:unique
name=”relationship-name-uniqueness”>

<xsd:annotation>

<xsd:documentation>

The ejb-relation-name contains the name of a

relation. The name must be unique within

relationships.

</xsd:documentation>

</xsd:annotation>

<xsd:selector xpath=”javaee:ejb-relation”/>

14.5. Deployment Descriptor XML Schema

414 Jakarta Enterprise Beans, Core Features DRAFT

 <xsd:field
xpath=”javaee:ejb-relation-name”/>

</xsd:unique>

</xsd:element>

<xsd:element name=”assembly-descriptor”

type=”javaee:assembly-descriptorType”

minOccurs=”0”>

<xsd:annotation>

<xsd:documentation>

 Providing an assembly-descriptor in the
deployment

 descriptor is optional for the ejb-jar file
or .war file

producer.

</xsd:documentation>

</xsd:annotation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 415

</xsd:element>

<xsd:element name=”ejb-client-jar”

type=”javaee:pathType”

minOccurs=”0”>

<xsd:annotation>

<xsd:documentation>

<![CDATA[[

 The optional ejb-client-jar element
specifies a JAR

 file that contains the class files necessary
for a

client program to access the

enterprise beans in the ejb-jar file.

Example:

<ejb-client-jar>employee_service_client.jar

</ejb-client-jar>

14.5. Deployment Descriptor XML Schema

416 Jakarta Enterprise Beans, Core Features DRAFT

]]>

</xsd:documentation>

</xsd:annotation>

</xsd:element>

</xsd:sequence>

<xsd:attribute name=”version”

type=”javaee:dewey-versionType”

fixed=”3.2”

use=”required”>

<xsd:annotation>

<xsd:documentation>

The version specifies the version of the

 EJB specification that the instance document
must

 comply with. This information enables
deployment tools

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 417

to validate a particular EJB Deployment

 Descriptor with respect to a specific
version of the EJB

schema.

</xsd:documentation>

</xsd:annotation>

</xsd:attribute>

<xsd:attribute name=”metadata-complete”

type=”xsd:boolean”>

<xsd:annotation>

<xsd:documentation>

 The metadata-complete attribute defines
whether this

 deployment descriptor and other related
deployment

 descriptors for this module (e.g., web
service

14.5. Deployment Descriptor XML Schema

418 Jakarta Enterprise Beans, Core Features DRAFT

 descriptors) are complete, or whether the
class

 files available to this module and packaged
with

 this application should be examined for
annotations

that specify deployment information.

 If metadata-complete is set to “true”, the
deployment

 tool must ignore any annotations that
specify deployment

 information, which might be present in the
class files

of the application.

 If metadata-complete is not specified or is
set to

 “false”, the deployment tool must examine
the class

files of the application for annotations, as

specified by the specifications.

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 419

</xsd:documentation>

</xsd:annotation>

</xsd:attribute>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”ejb-nameType”>

<xsd:annotation>

<xsd:documentation>

<![CDATA[[

 The ejb-nameType specifies an enterprise
bean’s name. It is

 used by ejb-name elements. This name is
assigned by the

 file producer to name the enterprise bean in
the

14.5. Deployment Descriptor XML Schema

420 Jakarta Enterprise Beans, Core Features DRAFT

 ejb-jar file or .war file’s deployment
descriptor. The name must be

 unique among the names of the enterprise
beans in the same

ejb-jar file or .war file.

 There is no architected relationship between
the used

 ejb-name in the deployment descriptor and
the JNDI name that

 the Deployer will assign to the enterprise
bean’s home.

 The name for an entity bean must conform to
the lexical

rules for an NMTOKEN.

Example:

<ejb-name>EmployeeService</ejb-name>

]]>

</xsd:documentation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 421

</xsd:annotation>

<xsd:simpleContent>

 <xsd:restriction
base=”javaee:xsdNMTOKENType”/>

</xsd:simpleContent>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”ejb-relationType”>

<xsd:annotation>

<xsd:documentation>

 The ejb-relationType describes a
relationship between two

 entity beans with container-managed
persistence. It is used

 by ejb-relation elements. It contains a
description; an

 optional ejb-relation-name element; and
exactly two

14.5. Deployment Descriptor XML Schema

422 Jakarta Enterprise Beans, Core Features DRAFT

 relationship role declarations, defined by
the

 ejb-relationship-role elements. The name of
the

 relationship, if specified, is unique within
the ejb-jar

file.

 Support for entity beans is optional as of
EJB 3.2.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”description”

type=”javaee:descriptionType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”ejb-relation-name”

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 423

type=”javaee:string”

minOccurs=”0”>

<xsd:annotation>

<xsd:documentation>

 The ejb-relation-name element provides a
unique name

within the ejb-jar file for a relationship.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name=”ejb-relationship-role”

type=”javaee:ejb-relationship-roleType”

minOccurs=”2”

maxOccurs=”2”/>

</xsd:sequence>

14.5. Deployment Descriptor XML Schema

424 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

 <xsd:complexType
name=”ejb-relationship-roleType”>

<xsd:annotation>

<xsd:documentation>

<![CDATA[[

 The ejb-relationship-roleType describes a
role within a

 relationship. There are two roles in each
relationship.

 The ejb-relationship-roleType contains an
optional

 description; an optional name for the
relationship role; a

 specification of the multiplicity of the
role; an optional

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 425

 specification of cascade-delete
functionality for the role;

 the role source; and a declaration of the
cmr-field, if any,

 by means of which the other side of the
relationship is

 accessed from the perspective of the role
source.

 The multiplicity and role-source element are
mandatory.

 The relationship-role-source element
designates an entity

 bean by means of an ejb-name element. For
bidirectional

 relationships, both roles of a relationship
must declare a

 relationship-role-source element that
specifies a cmr-field

 in terms of which the relationship is
accessed. The lack of

 a cmr-field element in an
ejb-relationship-role specifies

14.5. Deployment Descriptor XML Schema

426 Jakarta Enterprise Beans, Core Features DRAFT

 that the relationship is unidirectional in
navigability and

 the entity bean that participates in the
relationship is

“not aware” of the relationship.

Example:

<ejb-relation>

<ejb-relation-name>Product-LineItem</ejb-relation-name>

<ejb-relationship-role>

<ejb-relationship-role-name>product-has-lineitems

</ejb-relationship-role-name>

<multiplicity>One</multiplicity>

<relationship-role-source>

<ejb-name>ProductEJB</ejb-name>

</relationship-role-source>

</ejb-relationship-role>

</ejb-relation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 427

 Support for entity beans is optional as of
EJB 3.2.

]]>

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”description”

type=”javaee:descriptionType”

minOccurs=”0”

maxOccurs=”unbounded”/>

 <xsd:element
name=”ejb-relationship-role-name”

type=”javaee:string”

minOccurs=”0”>

<xsd:annotation>

<xsd:documentation>

14.5. Deployment Descriptor XML Schema

428 Jakarta Enterprise Beans, Core Features DRAFT

 The ejb-relationship-role-name element
defines a

name for a role that is unique within an

 ejb-relation. Different relationships can
use the

same name for a role.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name=”multiplicity”

type=”javaee:multiplicityType”/>

<xsd:element name=”cascade-delete”

type=”javaee:emptyType”

minOccurs=”0”>

<xsd:annotation>

<xsd:documentation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 429

 The cascade-delete element specifies that,
within a

 particular relationship, the lifetime of one
or more

 entity beans is dependent upon the lifetime
of

 another entity bean. The cascade-delete
element can

 only be specified for an
ejb-relationship-role

 element contained in an ejb-relation element
in

which the other ejb-relationship-role

element specifies a multiplicity of One.

 Support for entity beans is optional as of
EJB 3.2.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

14.5. Deployment Descriptor XML Schema

430 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:element name=”relationship-role-source”

type=”javaee:relationship-role-sourceType”/>

<xsd:element name=”cmr-field”

type=”javaee:cmr-fieldType”

minOccurs=”0”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

 <xsd:complexType
name=”enterprise-beansType”>

<xsd:annotation>

<xsd:documentation>

 The enterprise-beansType declares one or
more enterprise

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 431

 beans. Each bean can be a session, entity or
message-driven

bean.

</xsd:documentation>

</xsd:annotation>

<xsd:choice maxOccurs=”unbounded”>

<xsd:element name=”session”

type=”javaee:session-beanType”>

 <xsd:unique
name=”session-ejb-local-ref-name-uniqueness”>

<xsd:annotation>

<xsd:documentation>

 The ejb-ref-name element contains the name
of

 an EJB reference. The EJB reference is an
entry in

 the component’s environment and is relative
to the

14.5. Deployment Descriptor XML Schema

432 Jakarta Enterprise Beans, Core Features DRAFT

 java:comp/env context. The name must be
unique within

the component.

 It is recommended that name be prefixed with
“ejb/”.

</xsd:documentation>

</xsd:annotation>

<xsd:selector xpath=”javaee:ejb-local-ref”/>

<xsd:field xpath=”javaee:ejb-ref-name”/>

</xsd:unique>

 <xsd:unique
name=”session-ejb-ref-name-uniqueness”>

<xsd:annotation>

<xsd:documentation>

 The ejb-ref-name element contains the name
of an EJB

 reference. The EJB reference is an entry in
the

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 433

 component’s environment and is relative to
the

 java:comp/env context. The name must be
unique

within the component.

 It is recommended that name is prefixed with
“ejb/”.

</xsd:documentation>

</xsd:annotation>

<xsd:selector xpath=”javaee:ejb-ref”/>

<xsd:field xpath=”javaee:ejb-ref-name”/>

</xsd:unique>

 <xsd:unique
name=”session-resource-env-ref-uniqueness”>

<xsd:annotation>

<xsd:documentation>

 The resource-env-ref-name element specifies
the name

14.5. Deployment Descriptor XML Schema

434 Jakarta Enterprise Beans, Core Features DRAFT

 of a resource environment reference; its
value is

 the environment entry name used in the
component

 code. The name is a JNDI name relative to
the

 java:comp/env context and must be unique
within an

component.

</xsd:documentation>

</xsd:annotation>

 <xsd:selector
xpath=”javaee:resource-env-ref”/>

 <xsd:field
xpath=”javaee:resource-env-ref-name”/>

</xsd:unique>

 <xsd:unique
name=”session-message-destination-ref-uniqueness”>

<xsd:annotation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 435

<xsd:documentation>

 The message-destination-ref-name element
specifies the name

 of a message destination reference; its
value is

 the message destination reference name used
in the component

 code. The name is a JNDI name relative to
the

 java:comp/env context and must be unique
within an

component.

</xsd:documentation>

</xsd:annotation>

 <xsd:selector
xpath=”javaee:message-destination-ref”/>

 <xsd:field
xpath=”javaee:message-destination-ref-name”/>

</xsd:unique>

14.5. Deployment Descriptor XML Schema

436 Jakarta Enterprise Beans, Core Features DRAFT

 <xsd:unique
name=”session-res-ref-name-uniqueness”>

<xsd:annotation>

<xsd:documentation>

 The res-ref-name element specifies the name
of a

 resource manager connection factory
reference. The name

 is a JNDI name relative to the java:comp/env
context.

The name must be unique within an component.

</xsd:documentation>

</xsd:annotation>

<xsd:selector xpath=”javaee:resource-ref”/>

<xsd:field xpath=”javaee:res-ref-name”/>

</xsd:unique>

 <xsd:unique
name=”session-env-entry-name-uniqueness”>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 437

<xsd:annotation>

<xsd:documentation>

 The env-entry-name element contains the name
of a

 component’s environment entry. The name is a
JNDI

 name relative to the java:comp/env context.
The

name must be unique within an component.

</xsd:documentation>

</xsd:annotation>

<xsd:selector xpath=”javaee:env-entry”/>

<xsd:field xpath=”javaee:env-entry-name”/>

</xsd:unique>

</xsd:element>

<xsd:element name=”entity”

14.5. Deployment Descriptor XML Schema

438 Jakarta Enterprise Beans, Core Features DRAFT

type=”javaee:entity-beanType”>

 <xsd:unique
name=”entity-ejb-local-ref-name-uniqueness”>

<xsd:annotation>

<xsd:documentation>

 The ejb-ref-name element contains the name
of

 an EJB reference. The EJB reference is an
entry in

 the component’s environment and is relative
to the

 java:comp/env context. The name must be
unique within

the component.

 It is recommended that name be prefixed with
“ejb/”.

</xsd:documentation>

</xsd:annotation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 439

<xsd:selector xpath=”javaee:ejb-local-ref”/>

<xsd:field xpath=”javaee:ejb-ref-name”/>

</xsd:unique>

 <xsd:unique
name=”entity-ejb-ref-name-uniqueness”>

<xsd:annotation>

<xsd:documentation>

 The ejb-ref-name element contains the name
of an EJB

 reference. The EJB reference is an entry in
the

 component’s environment and is relative to
the

 java:comp/env context. The name must be
unique

within the component.

 It is recommended that name is prefixed with
“ejb/”.

14.5. Deployment Descriptor XML Schema

440 Jakarta Enterprise Beans, Core Features DRAFT

</xsd:documentation>

</xsd:annotation>

<xsd:selector xpath=”javaee:ejb-ref”/>

<xsd:field xpath=”javaee:ejb-ref-name”/>

</xsd:unique>

 <xsd:unique
name=”entity-resource-env-ref-uniqueness”>

<xsd:annotation>

<xsd:documentation>

 The resource-env-ref-name element specifies
the name

 of a resource environment reference; its
value is

 the environment entry name used in the
component

 code. The name is a JNDI name relative to
the

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 441

 java:comp/env context and must be unique
within an

component.

</xsd:documentation>

</xsd:annotation>

 <xsd:selector
xpath=”javaee:resource-env-ref”/>

 <xsd:field
xpath=”javaee:resource-env-ref-name”/>

</xsd:unique>

 <xsd:unique
name=”entity-message-destination-ref-uniqueness”>

<xsd:annotation>

<xsd:documentation>

 The message-destination-ref-name element
specifies the name

 of a message destination reference; its
value is

14.5. Deployment Descriptor XML Schema

442 Jakarta Enterprise Beans, Core Features DRAFT

 the message destination reference name used
in the component

 code. The name is a JNDI name relative to
the

 java:comp/env context and must be unique
within an

component.

</xsd:documentation>

</xsd:annotation>

 <xsd:selector
xpath=”javaee:message-destination-ref”/>

 <xsd:field
xpath=”javaee:message-destination-ref-name”/>

</xsd:unique>

 <xsd:unique
name=”entity-res-ref-name-uniqueness”>

<xsd:annotation>

<xsd:documentation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 443

 The res-ref-name element specifies the name
of a

 resource manager connection factory
reference. The name

 is a JNDI name relative to the java:comp/env
context.

The name must be unique within an component.

</xsd:documentation>

</xsd:annotation>

<xsd:selector xpath=”javaee:resource-ref”/>

<xsd:field xpath=”javaee:res-ref-name”/>

</xsd:unique>

 <xsd:unique
name=”entity-env-entry-name-uniqueness”>

<xsd:annotation>

<xsd:documentation>

 The env-entry-name element contains the name
of a

14.5. Deployment Descriptor XML Schema

444 Jakarta Enterprise Beans, Core Features DRAFT

 component’s environment entry. The name is a
JNDI

 name relative to the java:comp/env context.
The

name must be unique within an component.

</xsd:documentation>

</xsd:annotation>

<xsd:selector xpath=”javaee:env-entry”/>

<xsd:field xpath=”javaee:env-entry-name”/>

</xsd:unique>

</xsd:element>

<xsd:element name=”message-driven”

type=”javaee:message-driven-beanType”>

 <xsd:unique
name=”messaged-ejb-local-ref-name-uniqueness”>

<xsd:annotation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 445

<xsd:documentation>

 The ejb-ref-name element contains the name
of

 an EJB reference. The EJB reference is an
entry in

 the component’s environment and is relative
to the

 java:comp/env context. The name must be
unique within

the component.

 It is recommended that name be prefixed with
“ejb/”.

</xsd:documentation>

</xsd:annotation>

<xsd:selector xpath=”javaee:ejb-local-ref”/>

<xsd:field xpath=”javaee:ejb-ref-name”/>

</xsd:unique>

14.5. Deployment Descriptor XML Schema

446 Jakarta Enterprise Beans, Core Features DRAFT

 <xsd:unique
name=”messaged-ejb-ref-name-uniqueness”>

<xsd:annotation>

<xsd:documentation>

 The ejb-ref-name element contains the name
of an EJB

 reference. The EJB reference is an entry in
the

 component’s environment and is relative to
the

 java:comp/env context. The name must be
unique

within the component.

 It is recommended that name is prefixed with
“ejb/”.

</xsd:documentation>

</xsd:annotation>

<xsd:selector xpath=”javaee:ejb-ref”/>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 447

<xsd:field xpath=”javaee:ejb-ref-name”/>

</xsd:unique>

 <xsd:unique
name=”messaged-resource-env-ref-uniqueness”>

<xsd:annotation>

<xsd:documentation>

 The resource-env-ref-name element specifies
the name

 of a resource environment reference; its
value is

 the environment entry name used in the
component

 code. The name is a JNDI name relative to
the

 java:comp/env context and must be unique
within an

component.

</xsd:documentation>

14.5. Deployment Descriptor XML Schema

448 Jakarta Enterprise Beans, Core Features DRAFT

</xsd:annotation>

 <xsd:selector
xpath=”javaee:resource-env-ref”/>

 <xsd:field
xpath=”javaee:resource-env-ref-name”/>

</xsd:unique>

 <xsd:unique
name=”messaged-message-destination-ref-uniqueness”>

<xsd:annotation>

<xsd:documentation>

 The message-destination-ref-name element
specifies the name

 of a message destination reference; its
value is

 the message destination reference name used
in the component

 code. The name is a JNDI name relative to
the

 java:comp/env context and must be unique
within an

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 449

component.

</xsd:documentation>

</xsd:annotation>

 <xsd:selector
xpath=”javaee:message-destination-ref”/>

 <xsd:field
xpath=”javaee:message-destination-ref-name”/>

</xsd:unique>

 <xsd:unique
name=”messaged-res-ref-name-uniqueness”>

<xsd:annotation>

<xsd:documentation>

 The res-ref-name element specifies the name
of a

 resource manager connection factory
reference. The name

 is a JNDI name relative to the java:comp/env
context.

14.5. Deployment Descriptor XML Schema

450 Jakarta Enterprise Beans, Core Features DRAFT

The name must be unique within an component.

</xsd:documentation>

</xsd:annotation>

<xsd:selector xpath=”javaee:resource-ref”/>

<xsd:field xpath=”javaee:res-ref-name”/>

</xsd:unique>

 <xsd:unique
name=”messaged-env-entry-name-uniqueness”>

<xsd:annotation>

<xsd:documentation>

 The env-entry-name element contains the name
of a

 component’s environment entry. The name is a
JNDI

 name relative to the java:comp/env context.
The

name must be unique within an component.

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 451

</xsd:documentation>

</xsd:annotation>

<xsd:selector xpath=”javaee:env-entry”/>

<xsd:field xpath=”javaee:env-entry-name”/>

</xsd:unique>

</xsd:element>

</xsd:choice>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”entity-beanType”>

<xsd:annotation>

<xsd:documentation>

14.5. Deployment Descriptor XML Schema

452 Jakarta Enterprise Beans, Core Features DRAFT

 Support for entity beans is optional as of
EJB 3.2.

 The entity-beanType declares an entity bean.
The declaration

consists of:

• an optional description

• an optional display name

• an optional icon element that contains a small and a large

icon file name

• a unique name assigned to the enterprise bean

in the deployment descriptor

• an optional mapped-name element that can be used to provide

 vendor-specific deployment information such
as the physical

 jndi-name of the entity bean’s remote home
interface. This

 element is not required to be supported by
all implementations.

Any use of this element is non-portable.

• the names of the entity bean’s remote home

and remote interfaces, if any

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 453

• the names of the entity bean’s local home and local

interfaces, if any

• the entity bean’s implementation class

• the optional entity bean’s persistence management type. If

 this element is not specified it is
defaulted to Container.

• the entity bean’s primary key class name

• an indication of the entity bean’s reentrancy

• an optional specification of the

entity bean’s cmp-version

• an optional specification of the entity bean’s

abstract schema name

• an optional list of container-managed fields

• an optional specification of the primary key

field

• an optional declaration of the bean’s environment

entries

• an optional declaration of the bean’s EJB

references

• an optional declaration of the bean’s local

EJB references

14.5. Deployment Descriptor XML Schema

454 Jakarta Enterprise Beans, Core Features DRAFT

• an optional declaration of the bean’s web

service references

• an optional declaration of the security role

references

• an optional declaration of the security identity

 to be used for the execution of the bean’s
methods

• an optional declaration of the bean’s

 resource manager connection factory
references

• an optional declaration of the bean’s

resource environment references

• an optional declaration of the bean’s message

destination references

• an optional set of query declarations

for finder and select methods for an entity

bean with cmp-version 2.x.

 The optional abstract-schema-name element
must be specified

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 455

 for an entity bean with container-managed
persistence and

cmp-version 2.x.

 The optional primkey-field may be present in
the descriptor

 if the entity’s persistence-type is
Container.

 The optional cmp-version element may be
present in the

 descriptor if the entity’s persistence-type
is Container. If

 the persistence-type is Container and the
cmp-version

 element is not specified, its value defaults
to 2.x.

 The optional home and remote elements must
be specified if

the entity bean cmp-version is 1.x.

 The optional home and remote elements must
be specified if

14.5. Deployment Descriptor XML Schema

456 Jakarta Enterprise Beans, Core Features DRAFT

 the entity bean has a remote home and remote
interface.

 The optional local-home and local elements
must be specified

 if the entity bean has a local home and
local interface.

 Either both the local-home and the local
elements or both

 the home and the remote elements must be
specified.

 The optional query elements must be present
if the

 persistence-type is Container and the
cmp-version is 2.x and

 query methods other than findByPrimaryKey
have been defined

for the entity bean.

 The other elements that are optional are
“optional” in the

 sense that they are omitted if the lists
represented by them

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 457

are empty.

 At least one cmp-field element must be
present in the

 descriptor if the entity’s persistence-type
is Container and

 the cmp-version is 1.x, and none must not be
present if the

entity’s persistence-type is Bean.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:group ref=”javaee:descriptionGroup”/>

<xsd:element name=”ejb-name”

type=”javaee:ejb-nameType”/>

<xsd:element name=”mapped-name”

type=”javaee:xsdStringType”

14.5. Deployment Descriptor XML Schema

458 Jakarta Enterprise Beans, Core Features DRAFT

minOccurs=”0”/>

<xsd:element name=”home”

type=”javaee:homeType”

minOccurs=”0”/>

<xsd:element name=”remote”

type=”javaee:remoteType”

minOccurs=”0”/>

<xsd:element name=”local-home”

type=”javaee:local-homeType”

minOccurs=”0”/>

<xsd:element name=”local”

type=”javaee:localType”

minOccurs=”0”/>

<xsd:element name=”ejb-class”

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 459

type=”javaee:ejb-classType”/>

<xsd:element name=”persistence-type”

type=”javaee:persistence-typeType”/>

<xsd:element name=”prim-key-class”

type=”javaee:fully-qualified-classType”>

<xsd:annotation>

<xsd:documentation>

The prim-key-class element contains the

fully-qualified name of an

entity bean’s primary key class.

 If the definition of the primary key class
is

 deferred to deployment time, the
prim-key-class

element should specify java.lang.Object.

14.5. Deployment Descriptor XML Schema

460 Jakarta Enterprise Beans, Core Features DRAFT

 Support for entity beans is optional as of
EJB 3.2.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name=”reentrant”

type=”javaee:true-falseType”>

<xsd:annotation>

<xsd:documentation>

 The reentrant element specifies whether an
entity

bean is reentrant or not.

The reentrant element must be one of the two

following: true or false

</xsd:documentation>

</xsd:annotation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 461

</xsd:element>

<xsd:element name=”cmp-version”

type=”javaee:cmp-versionType”

minOccurs=”0”/>

<xsd:element name=”abstract-schema-name”

type=”javaee:java-identifierType”

minOccurs=”0”>

<xsd:annotation>

<xsd:documentation>

 The abstract-schema-name element specifies
the name

 of the abstract schema type of an entity
bean with

 cmp-version 2.x. It is used in EJB QL
queries.

 For example, the abstract-schema-name for an
entity

14.5. Deployment Descriptor XML Schema

462 Jakarta Enterprise Beans, Core Features DRAFT

bean whose local interface is

com.acme.commerce.Order might be Order.

 Support for entity beans is optional as of
EJB 3.2.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name=”cmp-field”

type=”javaee:cmp-fieldType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”primkey-field”

type=”javaee:string”

minOccurs=”0”>

<xsd:annotation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 463

<xsd:documentation>

 The primkey-field element is used to specify
the

 name of the primary key field for an entity
with

container-managed persistence.

 The primkey-field must be one of the fields
declared

 in the cmp-field element, and the type of
the field

must be the same as the primary key type.

 The primkey-field element is not used if the
primary

 key maps to multiple container-managed
fields

 (i.e. the key is a compound key). In this
case, the

 fields of the primary key class must be
public, and

 their names must correspond to the field
names of

14.5. Deployment Descriptor XML Schema

464 Jakarta Enterprise Beans, Core Features DRAFT

the entity bean class that comprise the key.

 Support for entity beans is optional as of
EJB 3.2.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

 <xsd:group
ref=”javaee:jndiEnvironmentRefsGroup”/>

<xsd:element name=”security-role-ref”

type=”javaee:security-role-refType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”security-identity”

type=”javaee:security-identityType”

minOccurs=”0”/>

<xsd:element name=”query”

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 465

type=”javaee:queryType”

minOccurs=”0”

maxOccurs=”unbounded”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”exclude-listType”>

<xsd:annotation>

<xsd:documentation>

 The exclude-listType specifies one or more
methods which

the Assembler marks to be uncallable.

 If the method permission relation contains
methods that are

14.5. Deployment Descriptor XML Schema

466 Jakarta Enterprise Beans, Core Features DRAFT

 in the exclude list, the Deployer should
consider those

methods to be uncallable.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”description”

type=”javaee:descriptionType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”method”

type=”javaee:methodType”

maxOccurs=”unbounded”/>

</xsd:sequence>

<xsd:attribute name=”id”

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 467

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

 <xsd:complexType
name=”application-exceptionType”>

<xsd:annotation>

<xsd:documentation>

 The application-exceptionType declares an
application

exception. The declaration consists of:

• the exception class. When the container receives

an exception of this type, it is required to

 forward this exception as an applcation
exception

 to the client regardless of whether it is a
checked

or unchecked exception.

• an optional rollback element. If this element is

14.5. Deployment Descriptor XML Schema

468 Jakarta Enterprise Beans, Core Features DRAFT

 set to true, the container must rollback the
current

 transaction before forwarding the exception
to the

 client. If not specified, it defaults to
false.

• an optional inherited element. If this element is

 set to true, subclasses of the exception
class type

 are also automatically considered
application

 exceptions (unless overriden at a lower
level).

 If set to false, only the exception class
type is

considered an application-exception, not its

exception subclasses. If not specified, this

value defaults to true.

</xsd:documentation>

</xsd:annotation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 469

<xsd:sequence>

<xsd:element name=”exception-class”

type=”javaee:fully-qualified-classType”/>

<xsd:element name=”rollback”

type=”javaee:true-falseType”

minOccurs=”0”/>

<xsd:element name=”inherited”

type=”javaee:true-falseType”

minOccurs=”0”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”interceptorsType”>

14.5. Deployment Descriptor XML Schema

470 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:annotation>

<xsd:documentation>

 The interceptorsType element declares one or
more interceptor

 classes used by components within this
ejb-jar file or .war file.

The declaration consists of :

• An optional description.

• One or more interceptor elements.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”description”

type=”javaee:descriptionType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”interceptor”

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 471

type=”javaee:interceptorType”

maxOccurs=”unbounded”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”interceptorType”>

<xsd:annotation>

<xsd:documentation>

 The interceptorType element declares
information about a single

interceptor class. It consists of :

• An optional description.

• The fully-qualified name of the interceptor class.

• An optional list of around invoke methods declared on the

interceptor class and/or its super-classes.

14.5. Deployment Descriptor XML Schema

472 Jakarta Enterprise Beans, Core Features DRAFT

• An optional list of around timeout methods declared on the

interceptor class and/or its super-classes.

• An optional list environment dependencies for the interceptor

class and/or its super-classes.

• An optional list of post-activate methods declared on the

interceptor class and/or its super-classes.

• An optional list of pre-passivate methods declared on the

interceptor class and/or its super-classes.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”description”

type=”javaee:descriptionType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”interceptor-class”

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 473

type=”javaee:fully-qualified-classType”/>

<xsd:element name=”around-invoke”

type=”javaee:around-invokeType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”around-timeout”

type=”javaee:around-timeoutType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”around-construct”

type=”javaee:lifecycle-callbackType”

minOccurs=”0”

maxOccurs=”unbounded”/>

 <xsd:group
ref=”javaee:jndiEnvironmentRefsGroup”/>

14.5. Deployment Descriptor XML Schema

474 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:element name=”post-activate”

type=”javaee:lifecycle-callbackType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”pre-passivate”

type=”javaee:lifecycle-callbackType”

minOccurs=”0”

maxOccurs=”unbounded”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

 <xsd:complexType
name=”interceptor-bindingType”>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 475

<xsd:annotation>

<xsd:documentation>

<![CDATA[[

 The interceptor-bindingType element
describes the binding of

 interceptor classes to beans within the
ejb-jar file or .war file.

It consists of :

• An optional description.

• The name of an ejb within the module or the wildcard value “*”,

 which is used to define interceptors that
are bound to all

beans in the ejb-jar file or .war file.

• A list of interceptor classes that are bound to the contents of

 the ejb-name element or a specification of
the total ordering

 over the interceptors defined for the given
level and above.

• An optional exclude-default-interceptors element. If set to true,

14.5. Deployment Descriptor XML Schema

476 Jakarta Enterprise Beans, Core Features DRAFT

 specifies that default interceptors are not
to be applied to

a bean-class and/or business method.

• An optional exclude-class-interceptors element. If set to true,

 specifies that class interceptors are not to
be applied to

a business method.

• An optional set of method elements for describing the name/params

of a method-level interceptor.

 Interceptors bound to all classes using the
wildcard syntax

 “*” are default interceptors for the
components in the ejb-jar file or

.war file.

 In addition, interceptors may be bound at
the level of the bean

 class (class-level interceptors) or business
methods (method-level

interceptors).

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 477

 The binding of interceptors to classes is
additive. If interceptors

 are bound at the class-level and/or
default-level as well as the

 method-level, both class-level and/or
default-level as well as

method-level will apply.

 The method-name element may be used to bind
a constructor-level

 interceptor using the unqualified name of
the bean class as the value;

 the optional method-params elements identify
the constructor if a bean

 class has a constructor annotated with the
Inject annotation in

addition to a no-arg constructor.

 There are four possible styles of the
interceptor element syntax :

1.

<interceptor-binding>

14.5. Deployment Descriptor XML Schema

478 Jakarta Enterprise Beans, Core Features DRAFT

<ejb-name>*</ejb-name>

<interceptor-class>INTERCEPTOR</interceptor-class>

</interceptor-binding>

 Specifying the ejb-name as the wildcard
value “*” designates

 default interceptors (interceptors that
apply to all session and

 message-driven beans contained in the
ejb-jar file or .war file).

2.

<interceptor-binding>

<ejb-name>EJBNAME</ejb-name>

<interceptor-class>INTERCEPTOR</interceptor-class>

</interceptor-binding>

 This style is used to refer to interceptors
associated with the

 specified enterprise bean(class-level
interceptors).

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 479

3.

<interceptor-binding>

<ejb-name>EJBNAME</ejb-name>

<interceptor-class>INTERCEPTOR</interceptor-class>

<method>

<method-name>METHOD</method-name>

</method>

</interceptor-binding>

 This style is used to associate a
method-level interceptor with

 the specified enterprise bean. If there are
multiple methods

 with the same overloaded name, the element
of this style refers

 to all the methods with the overloaded name.
Method-level

 interceptors can only be associated with
business methods of the

14.5. Deployment Descriptor XML Schema

480 Jakarta Enterprise Beans, Core Features DRAFT

 bean class. Note that the wildcard value “*”
cannot be used

to specify method-level interceptors.

4.

<interceptor-binding>

<ejb-name>EJBNAME</ejb-name>

<interceptor-class>INTERCEPTOR</interceptor-class>

<method>

<method-name>METHOD</method-name>

<method-params>

<method-param>PARAM-1</method-param>

<method-param>PARAM-2</method-param>

...

<method-param>PARAM-N</method-param>

</method-params>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 481

</method>

</interceptor-binding>

 This style is used to associate a
method-level interceptor with

 the specified method of the specified
enterprise bean. This

 style is used to refer to a single method
within a set of methods

 with an overloaded name. The values PARAM-1
through PARAM-N

 are the fully-qualified Java types of the
method’s input parameters

 (if the method has no input arguments, the
method-params element

 contains no method-param elements). Arrays
are specified by the

 array element’s type, followed by one or
more pair of square

brackets (e.g. int[][]).

]]>

14.5. Deployment Descriptor XML Schema

482 Jakarta Enterprise Beans, Core Features DRAFT

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”description”

type=”javaee:descriptionType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”ejb-name”

type=”javaee:string”/>

<xsd:choice>

<xsd:element name=”interceptor-class”

type=”javaee:fully-qualified-classType”

minOccurs=”0”

maxOccurs=”unbounded”/>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 483

<xsd:element name=”interceptor-order”

type=”javaee:interceptor-orderType”

minOccurs=”1”/>

</xsd:choice>

 <xsd:element
name=”exclude-default-interceptors”

type=”javaee:true-falseType”

minOccurs=”0”/>

 <xsd:element
name=”exclude-class-interceptors”

type=”javaee:true-falseType”

minOccurs=”0”/>

<xsd:element name=”method”

type=”javaee:named-methodType”

minOccurs=”0”/>

</xsd:sequence>

14.5. Deployment Descriptor XML Schema

484 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

 <xsd:complexType
name=”interceptor-orderType”>

<xsd:annotation>

<xsd:documentation>

 The interceptor-orderType element describes
a total ordering

of interceptor classes.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”interceptor-class”

type=”javaee:fully-qualified-classType”

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 485

minOccurs=”1”

maxOccurs=”unbounded”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”named-methodType”>

<xsd:sequence>

<xsd:element name=”method-name”

type=”javaee:string”/>

<xsd:element name=”method-params”

type=”javaee:method-paramsType”

minOccurs=”0”/>

</xsd:sequence>

14.5. Deployment Descriptor XML Schema

486 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”init-methodType”>

<xsd:sequence>

<xsd:element name=”create-method”

type=”javaee:named-methodType”/>

<xsd:element name=”bean-method”

type=”javaee:named-methodType”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 487

<xsd:complexType name=”remove-methodType”>

<xsd:sequence>

<xsd:element name=”bean-method”

type=”javaee:named-methodType”/>

<xsd:element name=”retain-if-exception”

type=”javaee:true-falseType”

minOccurs=”0”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

 <xsd:complexType
name=”message-driven-beanType”>

<xsd:annotation>

14.5. Deployment Descriptor XML Schema

488 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:documentation>

 The message-driven element declares a
message-driven

bean. The declaration consists of:

• an optional description

• an optional display name

• an optional icon element that contains a small and a large

icon file name.

• a name assigned to the enterprise bean in

the deployment descriptor

• an optional mapped-name element that can be used to provide

 vendor-specific deployment information such
as the physical

 jndi-name of destination from which this
message-driven bean

 should consume. This element is not required
to be supported

 by all implementations. Any use of this
element is non-portable.

• the message-driven bean’s implementation class

• an optional declaration of the bean’s messaging

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 489

type

• an optional declaration of the bean’s timeout method for

handling programmatically created timers

• an optional declaration of timers to be automatically created at

deployment time

• the optional message-driven bean’s transaction management

 type. If it is not defined, it is defaulted
to Container.

• an optional declaration of the bean’s

message-destination-type

• an optional declaration of the bean’s

message-destination-link

• an optional declaration of the message-driven bean’s

activation configuration properties

• an optional list of the message-driven bean class and/or

superclass around-invoke methods.

• an optional list of the message-driven bean class and/or

superclass around-timeout methods.

• an optional declaration of the bean’s environment

14.5. Deployment Descriptor XML Schema

490 Jakarta Enterprise Beans, Core Features DRAFT

entries

• an optional declaration of the bean’s EJB references

• an optional declaration of the bean’s local EJB

references

• an optional declaration of the bean’s web service

references

• an optional declaration of the security role

references

• an optional declaration of the security

 identity to be used for the execution of the
bean’s

methods

• an optional declaration of the bean’s

resource manager connection factory

references

• an optional declaration of the bean’s resource

environment references.

• an optional declaration of the bean’s message

destination references

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 491

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:group ref=”javaee:descriptionGroup”/>

<xsd:element name=”ejb-name”

type=”javaee:ejb-nameType”/>

<xsd:element name=”mapped-name”

type=”javaee:xsdStringType”

minOccurs=”0”/>

<xsd:element name=”ejb-class”

type=”javaee:ejb-classType”

minOccurs=”0”>

<xsd:annotation>

<xsd:documentation>

14.5. Deployment Descriptor XML Schema

492 Jakarta Enterprise Beans, Core Features DRAFT

 The ejb-class element specifies the fully
qualified name

 of the bean class for this ejb. It is
required unless

 there is a component-defining annotation for
the same

ejb-name.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name=”messaging-type”

type=”javaee:fully-qualified-classType”

minOccurs=”0”>

<xsd:annotation>

<xsd:documentation>

 The messaging-type element specifies the
message

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 493

 listener interface of the message-driven
bean.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name=”timeout-method”

type=”javaee:named-methodType”

minOccurs=”0”>

<xsd:annotation>

<xsd:documentation>

 The timeout-method element specifies the
method that

will receive callbacks for programmatically

created timers.

</xsd:documentation>

</xsd:annotation>

14.5. Deployment Descriptor XML Schema

494 Jakarta Enterprise Beans, Core Features DRAFT

</xsd:element>

<xsd:element name=”timer”

type=”javaee:timerType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”transaction-type”

type=”javaee:transaction-typeType”

minOccurs=”0”/>

<xsd:element name=”message-destination-type”

type=”javaee:message-destination-typeType”

minOccurs=”0”/>

<xsd:element name=”message-destination-link”

type=”javaee:message-destination-linkType”

minOccurs=”0”/>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 495

<xsd:element name=”activation-config”

type=”javaee:activation-configType”

minOccurs=”0”/>

<xsd:element name=”around-invoke”

type=”javaee:around-invokeType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”around-timeout”

type=”javaee:around-timeoutType”

minOccurs=”0”

maxOccurs=”unbounded”/>

 <xsd:group
ref=”javaee:jndiEnvironmentRefsGroup”/>

<xsd:element name=”security-role-ref”

type=”javaee:security-role-refType”

14.5. Deployment Descriptor XML Schema

496 Jakarta Enterprise Beans, Core Features DRAFT

minOccurs=”0”

maxOccurs=”unbounded”>

</xsd:element>

<xsd:element name=”security-identity”

type=”javaee:security-identityType”

minOccurs=”0”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”methodType”>

<xsd:annotation>

<xsd:documentation>

<![CDATA[[

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 497

 The methodType is used to denote a method of
an enterprise

 bean. The method may be any of the following
or a set of

 any of the following methods may be
designated:

business interface method

home interface method

component interface method

web service endpoint interface method

no-interface view method

 singleton session bean lifecycle callback
method

 stateful session bean lifecycle callback
method (see

limitations)

timeout callback method

message-driven bean message listener method

14.5. Deployment Descriptor XML Schema

498 Jakarta Enterprise Beans, Core Features DRAFT

 The ejb-name element must be the name of one
of the enterprise

beans declared in the deployment descriptor.

 The optional method-intf element allows
distinguishing between a

 method with the same signature that is
multiply defined

across any of the above.

 The method-name element specifies the method
name.

 The optional method-params elements identify
a single method

 among multiple methods with an overloaded
method name.

 There are three possible styles of using
methodType element

within a method element:

1.

<method>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 499

<ejb-name>EJBNAME</ejb-name>

<method-name>*</method-name>

</method>

 This style is used to refer to all of the
following methods

of the specified enterprise bean:

business interface methods

home interface methods

component interface methods

web service endpoint interface methods

no-interface view methods

 singleton session bean lifecycle callback
methods

timeout callback methods

message-driven bean message listener method

14.5. Deployment Descriptor XML Schema

500 Jakarta Enterprise Beans, Core Features DRAFT

 This style may also be used in combination
with the

 method-intf element that contains
LifecycleCallback as

 the value to specify transaction attributes
of a stateful

 session bean PostConstruct, PreDestroy,
PrePassivate,

 and PostActivate lifecycle callback methods
or to override

 transaction attributes of a singleton
session bean

 PostConstruct and PreDestroy lifecycle
callback methods.

2.

<method>

<ejb-name>EJBNAME</ejb-name>

<method-name>METHOD</method-name>

</method>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 501

 This style is used to refer to the specified
method of

 the specified enterprise bean. If there are
multiple

 methods with the same overloaded name, the
element of

 this style refers to all the methods with
the overloaded

name.

 This style may be used to refer to stateful
session bean

 PostConstruct, PreDestroy, PrePassivate, and
PostActivate

 lifecycle callback methods to specify their
transaction

attributes if any of the following is true:

 there is only one method with this name in
the specified

enterprise bean

 all overloaded methods with this name in the
specified

14.5. Deployment Descriptor XML Schema

502 Jakarta Enterprise Beans, Core Features DRAFT

 enterprise bean are lifecycle callback
methods

 method-intf element is specified and it
contains

LifecycleCallback as the value

3.

<method>

<ejb-name>EJBNAME</ejb-name>

<method-name>METHOD</method-name>

<method-params>

<method-param>PARAM-1</method-param>

<method-param>PARAM-2</method-param>

...

<method-param>PARAM-n</method-param>

</method-params>

</method>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 503

 This style is used to refer to a single
method within a

 set of methods with an overloaded name.
PARAM-1 through

 PARAM-n are the fully-qualified Java types
of the

 method’s input parameters (if the method has
no input

 arguments, the method-params element
contains no

 method-param elements). Arrays are specified
by the

 array element’s type, followed by one or
more pair of

square brackets (e.g. int[][]).

 If a method with the same name and signature
is defined

 on more than one interface of an enterprise
bean, this

style refers to all those methods.

Examples:

14.5. Deployment Descriptor XML Schema

504 Jakarta Enterprise Beans, Core Features DRAFT

 Style 1: The following method element refers
to all of the

 following methods of the EmployeeService
bean:

no interface view methods

business interface methods

home interface methods

component business interface methods

 singleton session bean lifecycle callback
methods, if any

timeout callback methods

web service endpoint interface methods

 message-driven bean message listener methods
(if the bean

a message-driven bean)

<method>

<ejb-name>EmployeeService</ejb-name>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 505

<method-name>*</method-name>

</method>

 Style 2: The following method element refers
to all the

 create methods of the EmployeeService bean’s
home

interface(s).

<method>

<ejb-name>EmployeeService</ejb-name>

<method-name>create</method-name>

</method>

 Style 3: The following method element refers
to the

 create(String firstName, String LastName)
method of the

EmployeeService bean’s home interface(s).

<method>

14.5. Deployment Descriptor XML Schema

506 Jakarta Enterprise Beans, Core Features DRAFT

<ejb-name>EmployeeService</ejb-name>

<method-name>create</method-name>

<method-params>

<method-param>java.lang.String</method-param>

<method-param>java.lang.String</method-param>

</method-params>

</method>

 The following example illustrates a Style 3
element with

more complex parameter types. The method

 foobar(char s, int i, int[] iar,
mypackage.MyClass mycl,

 mypackage.MyClass[][] myclaar) would be
specified as:

<method>

<ejb-name>EmployeeService</ejb-name>

<method-name>foobar</method-name>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 507

<method-params>

<method-param>char</method-param>

<method-param>int</method-param>

<method-param>int[]</method-param>

<method-param>mypackage.MyClass</method-param>

<method-param>mypackage.MyClass[][]</method-param>

</method-params>

</method>

 The optional method-intf element can be used
when it becomes

 necessary to differentiate between a method
that is defined

 multiple times with the same name and
signature across any

 of the following methods of an enterprise
bean:

business interface methods

home interface methods

14.5. Deployment Descriptor XML Schema

508 Jakarta Enterprise Beans, Core Features DRAFT

component interface methods

web service endpoint methods

no-interface view methods

 singleton or stateful session bean lifecycle
callback methods

timeout callback methods

message-driven bean message listener methods

 However, if the same method is a method of
both the local

 business interface, and the local component
interface,

 the same attribute applies to the method for
both interfaces.

 Likewise, if the same method is a method of
both the remote

 business interface and the remote component
interface, the same

 attribute applies to the method for both
interfaces.

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 509

For example, the method element

<method>

<ejb-name>EmployeeService</ejb-name>

<method-intf>Remote</method-intf>

<method-name>create</method-name>

<method-params>

<method-param>java.lang.String</method-param>

<method-param>java.lang.String</method-param>

</method-params>

</method>

 can be used to differentiate the
create(String, String)

 method defined in the remote interface from
the

 create(String, String) method defined in the
remote home

interface, which would be defined as

14.5. Deployment Descriptor XML Schema

510 Jakarta Enterprise Beans, Core Features DRAFT

<method>

<ejb-name>EmployeeService</ejb-name>

<method-intf>Home</method-intf>

<method-name>create</method-name>

<method-params>

<method-param>java.lang.String</method-param>

<method-param>java.lang.String</method-param>

</method-params>

</method>

 and the create method that is defined in the
local home

interface which would be defined as

<method>

<ejb-name>EmployeeService</ejb-name>

<method-intf>LocalHome</method-intf>

<method-name>create</method-name>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 511

<method-params>

<method-param>java.lang.String</method-param>

<method-param>java.lang.String</method-param>

</method-params>

</method>

 The method-intf element can be used with all
three Styles

 of the method element usage. For example,
the following

 method element example could be used to
refer to all the

 methods of the EmployeeService bean’s remote
home interface

and the remote business interface.

<method>

<ejb-name>EmployeeService</ejb-name>

<method-intf>Home</method-intf>

<method-name>*</method-name>

14.5. Deployment Descriptor XML Schema

512 Jakarta Enterprise Beans, Core Features DRAFT

</method>

]]>

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”description”

type=”javaee:descriptionType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”ejb-name”

type=”javaee:ejb-nameType”/>

<xsd:element name=”method-intf”

type=”javaee:method-intfType”

minOccurs=”0”>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 513

</xsd:element>

<xsd:element name=”method-name”

type=”javaee:method-nameType”/>

<xsd:element name=”method-params”

type=”javaee:method-paramsType”

minOccurs=”0”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”method-intfType”>

<xsd:annotation>

<xsd:documentation>

14.5. Deployment Descriptor XML Schema

514 Jakarta Enterprise Beans, Core Features DRAFT

 The method-intf element allows a method
element to

 differentiate between the methods with the
same name and

 signature that are multiply defined across
the home and

 component interfaces (e.g, in both an
enterprise bean’s

 remote and local interfaces or in both an
enterprise bean’s

 home and remote interfaces, etc.); the
component and web

service endpoint interfaces, and so on.

 Local applies to the local component
interface, local business

interfaces, and the no-interface view.

 Remote applies to both remote component
interface and the remote

business interfaces.

 ServiceEndpoint refers to methods exposed
through a web service

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 515

endpoint.

 Timer refers to the bean’s timeout callback
methods.

 MessageEndpoint refers to the methods of a
message-driven bean’s

message-listener interface.

 LifecycleCallback refers to the
PostConstruct and PreDestroy

 lifecycle callback methods of a singleton
session bean and

 to the PostConstruct, PreDestroy,
PrePassivate, and PostActivate

 lifecycle callback methods of a stateful
session bean.

 The method-intf element must be one of the
following:

Home

Remote

LocalHome

14.5. Deployment Descriptor XML Schema

516 Jakarta Enterprise Beans, Core Features DRAFT

Local

ServiceEndpoint

Timer

MessageEndpoint

LifecycleCallback

</xsd:documentation>

</xsd:annotation>

<xsd:simpleContent>

<xsd:restriction base=”javaee:string”>

<xsd:enumeration value=”Home”/>

<xsd:enumeration value=”Remote”/>

<xsd:enumeration value=”LocalHome”/>

<xsd:enumeration value=”Local”/>

<xsd:enumeration value=”ServiceEndpoint”/>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 517

<xsd:enumeration value=”Timer”/>

<xsd:enumeration value=”MessageEndpoint”/>

<xsd:enumeration value=”LifecycleCallback”/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”method-nameType”>

<xsd:annotation>

<xsd:documentation>

 The method-nameType contains a name of an
enterprise

 bean method or the asterisk (*) character.
The asterisk is

 used when the element denotes all the
methods of an

enterprise bean’s client view interfaces.

14.5. Deployment Descriptor XML Schema

518 Jakarta Enterprise Beans, Core Features DRAFT

</xsd:documentation>

</xsd:annotation>

<xsd:simpleContent>

<xsd:restriction base=”javaee:string”/>

</xsd:simpleContent>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”method-paramsType”>

<xsd:annotation>

<xsd:documentation>

The method-paramsType defines a list of the

 fully-qualified Java type names of the
method parameters.

</xsd:documentation>

</xsd:annotation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 519

<xsd:sequence>

<xsd:element name=”method-param”

type=”javaee:java-typeType”

minOccurs=”0”

maxOccurs=”unbounded”>

<xsd:annotation>

<xsd:documentation>

 The method-param element contains a
primitive

 or a fully-qualified Java type name of a
method

parameter.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

</xsd:sequence>

14.5. Deployment Descriptor XML Schema

520 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

 <xsd:complexType
name=”method-permissionType”>

<xsd:annotation>

<xsd:documentation>

 The method-permissionType specifies that one
or more

 security roles are allowed to invoke one or
more enterprise

 bean methods. The method-permissionType
consists of an

 optional description, a list of security
role names or an

 indicator to state that the method is
unchecked for

 authorization, and a list of method
elements.

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 521

 Except as noted below the security roles
used in the

 method-permissionType must be defined in the
security-role

 elements of the deployment descriptor, and
the methods

 must be methods defined in the enterprise
bean’s no-interface

 view, business, home, component and/or web
service endpoint

interfaces.

 If the role name ”**” is included in the
list of allowed

 roles, and the application has not defined
in its deployment

 descriptor an application security role with
this name,

 then the list of allowed roles includes
every and any

authenticated user.

</xsd:documentation>

14.5. Deployment Descriptor XML Schema

522 Jakarta Enterprise Beans, Core Features DRAFT

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”description”

type=”javaee:descriptionType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:choice>

<xsd:element name=”role-name”

type=”javaee:role-nameType”

maxOccurs=”unbounded”/>

<xsd:element name=”unchecked”

type=”javaee:emptyType”>

<xsd:annotation>

<xsd:documentation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 523

 The unchecked element specifies that a
method is

 not checked for authorization by the
container

prior to invocation of the method.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

</xsd:choice>

<xsd:element name=”method”

type=”javaee:methodType”

maxOccurs=”unbounded”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

14.5. Deployment Descriptor XML Schema

524 Jakarta Enterprise Beans, Core Features DRAFT

<!-- ** -→

<xsd:complexType name=”multiplicityType”>

<xsd:annotation>

<xsd:documentation>

 The multiplicityType describes the
multiplicity of the

role that participates in a relation.

The value must be one of the two following:

One

Many

 Support for entity beans is optional as of
EJB 3.2.

</xsd:documentation>

</xsd:annotation>

<xsd:simpleContent>

<xsd:restriction base=”javaee:string”>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 525

<xsd:enumeration value=”One”/>

<xsd:enumeration value=”Many”/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

<!-- ** -→

 <xsd:complexType
name=”persistence-typeType”>

<xsd:annotation>

<xsd:documentation>

 The persistence-typeType specifies an entity
bean’s persistence

management type.

 The persistence-type element must be one of
the two following:

Bean

Container

14.5. Deployment Descriptor XML Schema

526 Jakarta Enterprise Beans, Core Features DRAFT

 Support for entity beans is optional as of
EJB 3.2.

</xsd:documentation>

</xsd:annotation>

<xsd:simpleContent>

<xsd:restriction base=”javaee:string”>

<xsd:enumeration value=”Bean”/>

<xsd:enumeration value=”Container”/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”queryType”>

<xsd:annotation>

<xsd:documentation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 527

The queryType defines a finder or select

query. It contains

• an optional description of the query

• the specification of the finder or select

method it is used by

• an optional specification of the result type

mapping, if the query is for a select method

and entity objects are returned.

• the EJB QL query string that defines the query.

 Queries that are expressible in EJB QL must
use the ejb-ql

 element to specify the query. If a query is
not expressible

 in EJB QL, the description element should be
used to

 describe the semantics of the query and the
ejb-ql element

should be empty.

 The result-type-mapping is an optional
element. It can only

14.5. Deployment Descriptor XML Schema

528 Jakarta Enterprise Beans, Core Features DRAFT

 be present if the query-method specifies a
select method

 that returns entity objects. The default
value for the

result-type-mapping element is “Local”.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”description”

type=”javaee:descriptionType”

minOccurs=”0”/>

<xsd:element name=”query-method”

type=”javaee:query-methodType”/>

<xsd:element name=”result-type-mapping”

type=”javaee:result-type-mappingType”

minOccurs=”0”/>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 529

<xsd:element name=”ejb-ql”

type=”javaee:xsdStringType”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”query-methodType”>

<xsd:annotation>

<xsd:documentation>

<![CDATA[[

 The query-method specifies the method for a
finder or select

query.

 The method-name element specifies the name
of a finder or select

14.5. Deployment Descriptor XML Schema

530 Jakarta Enterprise Beans, Core Features DRAFT

 method in the entity bean’s implementation
class.

 Each method-param must be defined for a
query-method using the

method-params element.

It is used by the query-method element.

Example:

<query>

 <description>Method finds large
orders</description>

<query-method>

<method-name>findLargeOrders</method-name>

<method-params></method-params>

</query-method>

<ejb-ql>

SELECT OBJECT(o) FROM Order o

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 531

WHERE o.amount > 1000

</ejb-ql>

</query>

 Support for entity beans is optional as of
EJB 3.2.

]]>

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”method-name”

type=”javaee:method-nameType”/>

<xsd:element name=”method-params”

type=”javaee:method-paramsType”/>

</xsd:sequence>

<xsd:attribute name=”id”

14.5. Deployment Descriptor XML Schema

532 Jakarta Enterprise Beans, Core Features DRAFT

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

 <xsd:complexType
name=”relationship-role-sourceType”>

<xsd:annotation>

<xsd:documentation>

 The relationship-role-sourceType designates
the source of a

role that participates in a relationship. A

relationship-role-sourceType is used by

 relationship-role-source elements to
uniquely identify an

entity bean.

 Support for entity beans is optional as of
EJB 3.2.

</xsd:documentation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 533

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”description”

type=”javaee:descriptionType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”ejb-name”

type=”javaee:ejb-nameType”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”relationshipsType”>

<xsd:annotation>

14.5. Deployment Descriptor XML Schema

534 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:documentation>

 The relationshipsType describes the
relationships in

 which entity beans with container-managed
persistence

 participate. The relationshipsType contains
an optional

 description; and a list of ejb-relation
elements, which

specify the container managed relationships.

 Support for entity beans is optional as of
EJB 3.2.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”description”

type=”javaee:descriptionType”

minOccurs=”0”

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 535

maxOccurs=”unbounded”/>

<xsd:element name=”ejb-relation”

type=”javaee:ejb-relationType”

maxOccurs=”unbounded”>

<xsd:unique name=”role-name-uniqueness”>

<xsd:annotation>

<xsd:documentation>

 The ejb-relationship-role-name contains the
name of a

 relationship role. The name must be unique
within

 a relationship, but can be reused in
different

relationships.

</xsd:documentation>

</xsd:annotation>

14.5. Deployment Descriptor XML Schema

536 Jakarta Enterprise Beans, Core Features DRAFT

 <xsd:selector
xpath=”.//javaee:ejb-relationship-role-name”/>

<xsd:field xpath=”.”/>

</xsd:unique>

</xsd:element>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

 <xsd:complexType
name=”result-type-mappingType”>

<xsd:annotation>

<xsd:documentation>

 The result-type-mappingType is used in the
query element to

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 537

 specify whether an abstract schema type
returned by a query

 for a select method is to be mapped to an
EJBLocalObject or

EJBObject type.

The value must be one of the following:

Local

Remote

</xsd:documentation>

</xsd:annotation>

<xsd:simpleContent>

<xsd:restriction base=”javaee:string”>

<xsd:enumeration value=”Local”/>

<xsd:enumeration value=”Remote”/>

</xsd:restriction>

</xsd:simpleContent>

14.5. Deployment Descriptor XML Schema

538 Jakarta Enterprise Beans, Core Features DRAFT

</xsd:complexType>

<!-- ** -→

 <xsd:complexType
name=”security-identityType”>

<xsd:annotation>

<xsd:documentation>

 The security-identityType specifies whether
the caller’s

 security identity is to be used for the
execution of the

 methods of the enterprise bean or whether a
specific run-as

 identity is to be used. It contains an
optional description

 and a specification of the security identity
to be used.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 539

<xsd:element name=”description”

type=”javaee:descriptionType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:choice>

<xsd:element name=”use-caller-identity”

type=”javaee:emptyType”>

<xsd:annotation>

<xsd:documentation>

 The use-caller-identity element specifies
that

 the caller’s security identity be used as
the

security identity for the execution of the

enterprise bean’s methods.

</xsd:documentation>

14.5. Deployment Descriptor XML Schema

540 Jakarta Enterprise Beans, Core Features DRAFT

</xsd:annotation>

</xsd:element>

<xsd:element name=”run-as”

type=”javaee:run-asType”/>

</xsd:choice>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”session-beanType”>

<xsd:annotation>

<xsd:documentation>

 The session-beanType declares an session
bean. The

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 541

declaration consists of:

• an optional description

• an optional display name

• an optional icon element that contains a small and a large

icon file name

• a name assigned to the enterprise bean

in the deployment description

• an optional mapped-name element that can be used to provide

 vendor-specific deployment information such
as the physical

 jndi-name of the session bean’s remote
home/business interface.

 This element is not required to be supported
by all

 implementations. Any use of this element is
non-portable.

• the names of all the remote or local business interfaces,

if any

• the names of the session bean’s remote home and

remote interfaces, if any

• the names of the session bean’s local home and

14.5. Deployment Descriptor XML Schema

542 Jakarta Enterprise Beans, Core Features DRAFT

local interfaces, if any

• an optional declaration that this bean exposes a

no-interface view

• the name of the session bean’s web service endpoint

interface, if any

• the session bean’s implementation class

• the session bean’s state management type

• an optional declaration of a stateful session bean’s timeout value

• an optional declaration of the session bean’s timeout method for

handling programmatically created timers

• an optional declaration of timers to be automatically created at

deployment time

• an optional declaration that a Singleton bean has eager

initialization

• an optional declaration of a Singleton/Stateful bean’s concurrency

management type

• an optional declaration of the method locking metadata

 for a Singleton with container managed
concurrency

• an optional declaration of the other Singleton beans in the

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 543

 application that must be initialized before
this bean

• an optional declaration of the session bean’s asynchronous

methods

• the optional session bean’s transaction management type.

 If it is not present, it is defaulted to
Container.

• an optional declaration of a stateful session bean’s

 afterBegin, beforeCompletion, and/or
afterCompletion methods

• an optional list of the session bean class and/or

superclass around-invoke methods.

• an optional list of the session bean class and/or

superclass around-timeout methods.

• an optional declaration of the bean’s

environment entries

• an optional declaration of the bean’s EJB references

• an optional declaration of the bean’s local

EJB references

• an optional declaration of the bean’s web

14.5. Deployment Descriptor XML Schema

544 Jakarta Enterprise Beans, Core Features DRAFT

service references

• an optional declaration of the security role

references

• an optional declaration of the security identity

 to be used for the execution of the bean’s
methods

• an optional declaration of the bean’s resource

manager connection factory references

• an optional declaration of the bean’s resource

environment references.

• an optional declaration of the bean’s message

destination references

• an optional specification as to whether the stateful

 session bean is passivation capable or not.
If not

 specified, the bean is assumed to be
passivation capable

 The elements that are optional are
“optional” in the sense

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 545

 that they are omitted when if lists
represented by them are

empty.

 The service-endpoint element may only be
specified if the

bean is a stateless session bean.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:group ref=”javaee:descriptionGroup”/>

<xsd:element name=”ejb-name”

type=”javaee:ejb-nameType”/>

<xsd:element name=”mapped-name”

type=”javaee:xsdStringType”

minOccurs=”0”/>

<xsd:element name=”home”

14.5. Deployment Descriptor XML Schema

546 Jakarta Enterprise Beans, Core Features DRAFT

type=”javaee:homeType”

minOccurs=”0”/>

<xsd:element name=”remote”

type=”javaee:remoteType”

minOccurs=”0”/>

<xsd:element name=”local-home”

type=”javaee:local-homeType”

minOccurs=”0”/>

<xsd:element name=”local”

type=”javaee:localType”

minOccurs=”0”/>

<xsd:element name=”business-local”

type=”javaee:fully-qualified-classType”

minOccurs=”0”

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 547

maxOccurs=”unbounded”/>

<xsd:element name=”business-remote”

type=”javaee:fully-qualified-classType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”local-bean”

type=”javaee:emptyType”

minOccurs=”0”>

<xsd:annotation>

<xsd:documentation>

The local-bean element declares that this

 session bean exposes a no-interface Local
client view.

</xsd:documentation>

</xsd:annotation>

14.5. Deployment Descriptor XML Schema

548 Jakarta Enterprise Beans, Core Features DRAFT

</xsd:element>

<xsd:element name=”service-endpoint”

type=”javaee:fully-qualified-classType”

minOccurs=”0”>

<xsd:annotation>

<xsd:documentation>

The service-endpoint element contains the

 fully-qualified name of the enterprise
bean’s web

 service endpoint interface. The
service-endpoint

 element may only be specified for a
stateless

 session bean. The specified interface must
be a

valid JAX-RPC service endpoint interface.

</xsd:documentation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 549

</xsd:annotation>

</xsd:element>

<xsd:element name=”ejb-class”

type=”javaee:ejb-classType”

minOccurs=”0”>

<xsd:annotation>

<xsd:documentation>

 The ejb-class element specifies the fully
qualified name

 of the bean class for this ejb. It is
required unless

 there is a component-defining annotation for
the same

ejb-name.

</xsd:documentation>

</xsd:annotation>

14.5. Deployment Descriptor XML Schema

550 Jakarta Enterprise Beans, Core Features DRAFT

</xsd:element>

<xsd:element name=”session-type”

type=”javaee:session-typeType”

minOccurs=”0”/>

<xsd:element name=”stateful-timeout”

type=”javaee:stateful-timeoutType”

minOccurs=”0”/>

<xsd:element name=”timeout-method”

type=”javaee:named-methodType”

minOccurs=”0”>

<xsd:annotation>

<xsd:documentation>

 The timeout-method element specifies the
method that

will receive callbacks for programmatically

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 551

created timers.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name=”timer”

type=”javaee:timerType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”init-on-startup”

type=”javaee:true-falseType”

minOccurs=”0”>

<xsd:annotation>

<xsd:documentation>

 The init-on-startup element specifies that a
Singleton

14.5. Deployment Descriptor XML Schema

552 Jakarta Enterprise Beans, Core Features DRAFT

bean has eager initialization.

 This element can only be specified for
singleton session

beans.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

 <xsd:element
name=”concurrency-management-type”

type=”javaee:concurrency-management-typeType”

minOccurs=”0”/>

<xsd:element name=”concurrent-method”

type=”javaee:concurrent-methodType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”depends-on”

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 553

type=”javaee:depends-onType”

minOccurs=”0”/>

<xsd:element name=”init-method”

type=”javaee:init-methodType”

minOccurs=”0”

maxOccurs=”unbounded”>

<xsd:annotation>

<xsd:documentation>

 The init-method element specifies the
mappings for

 EJB 2.x style create methods for an EJB 3.x
bean.

 This element can only be specified for
stateful

session beans.

</xsd:documentation>

14.5. Deployment Descriptor XML Schema

554 Jakarta Enterprise Beans, Core Features DRAFT

</xsd:annotation>

</xsd:element>

<xsd:element name=”remove-method”

type=”javaee:remove-methodType”

minOccurs=”0”

maxOccurs=”unbounded”>

<xsd:annotation>

<xsd:documentation>

 The remove-method element specifies the
mappings for

 EJB 2.x style remove methods for an EJB 3.x
bean.

 This element can only be specified for
stateful

session beans.

</xsd:documentation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 555

</xsd:annotation>

</xsd:element>

<xsd:element name=”async-method”

type=”javaee:async-methodType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”transaction-type”

type=”javaee:transaction-typeType”

minOccurs=”0”/>

<xsd:element name=”after-begin-method”

type=”javaee:named-methodType”

minOccurs=”0”/>

<xsd:element name=”before-completion-method”

type=”javaee:named-methodType”

14.5. Deployment Descriptor XML Schema

556 Jakarta Enterprise Beans, Core Features DRAFT

minOccurs=”0”/>

<xsd:element name=”after-completion-method”

type=”javaee:named-methodType”

minOccurs=”0”/>

<xsd:element name=”around-invoke”

type=”javaee:around-invokeType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”around-timeout”

type=”javaee:around-timeoutType”

minOccurs=”0”

maxOccurs=”unbounded”/>

 <xsd:group
ref=”javaee:jndiEnvironmentRefsGroup”/>

<xsd:element name=”post-activate”

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 557

type=”javaee:lifecycle-callbackType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”pre-passivate”

type=”javaee:lifecycle-callbackType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”security-role-ref”

type=”javaee:security-role-refType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”security-identity”

type=”javaee:security-identityType”

minOccurs=”0”/>

14.5. Deployment Descriptor XML Schema

558 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:element name=”passivation-capable”

type=”xsd:boolean”

default=”true”

minOccurs=”0”>

<xsd:annotation>

<xsd:documentation>

 The passivation-capable element specifies
whether the

 stateful session bean is passivation capable
or not.

 If not specified, the bean is assumed to be
passivation

capable.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 559

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”session-typeType”>

<xsd:annotation>

<xsd:documentation>

 The session-typeType describes whether the
session bean is a

 singleton, stateful or stateless session. It
is used by

session-type elements.

 The value must be one of the three
following:

Singleton

Stateful

14.5. Deployment Descriptor XML Schema

560 Jakarta Enterprise Beans, Core Features DRAFT

Stateless

</xsd:documentation>

</xsd:annotation>

<xsd:simpleContent>

<xsd:restriction base=”javaee:string”>

<xsd:enumeration value=”Singleton”/>

<xsd:enumeration value=”Stateful”/>

<xsd:enumeration value=”Stateless”/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

<!-- ** -→

 <xsd:complexType
name=”stateful-timeoutType”>

<xsd:annotation>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 561

<xsd:documentation>

 The stateful-timeoutType represents the
amount of time

 a stateful session bean can be idle(not
receive any client

 invocations) before it is eligible for
removal by the container.

 A timeout value of 0 means the bean is
immediately eligible for

removal.

 A timeout value of -1 means the bean will
never be removed due to

timeout.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”timeout”

type=”javaee:xsdIntegerType”/>

14.5. Deployment Descriptor XML Schema

562 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:element name=”unit”

type=”javaee:time-unit-typeType”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”time-unit-typeType”>

<xsd:annotation>

<xsd:documentation>

 The time-unit-typeType represents a time
duration at a given

unit of granularity.

 The time unit type must be one of the
following :

Days

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 563

Hours

Minutes

Seconds

Milliseconds

Microseconds

Nanoseconds

</xsd:documentation>

</xsd:annotation>

<xsd:simpleContent>

<xsd:restriction base=”javaee:string”>

<xsd:enumeration value=”Days”/>

<xsd:enumeration value=”Hours”/>

<xsd:enumeration value=”Minutes”/>

<xsd:enumeration value=”Seconds”/>

14.5. Deployment Descriptor XML Schema

564 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:enumeration value=”Milliseconds”/>

<xsd:enumeration value=”Microseconds”/>

<xsd:enumeration value=”Nanoseconds”/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”timer-scheduleType”>

<xsd:sequence>

<xsd:element name=”second”

type=”javaee:string”

minOccurs=”0”/>

<xsd:element name=”minute”

type=”javaee:string”

minOccurs=”0”/>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 565

<xsd:element name=”hour”

type=”javaee:string”

minOccurs=”0”/>

<xsd:element name=”day-of-month”

type=”javaee:string”

minOccurs=”0”/>

<xsd:element name=”month”

type=”javaee:string”

minOccurs=”0”/>

<xsd:element name=”day-of-week”

type=”javaee:string”

minOccurs=”0”/>

<xsd:element name=”year”

type=”javaee:string”

14.5. Deployment Descriptor XML Schema

566 Jakarta Enterprise Beans, Core Features DRAFT

minOccurs=”0”/>

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”timerType”>

<xsd:annotation>

<xsd:documentation>

 The timerType specifies an enterprise bean
timer. Each

 timer is automatically created by the
container upon

 deployment. Timer callbacks occur based on
the

 schedule attributes. All callbacks are made
to the

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 567

timeout-method associated with the timer.

 A timer can have an optional start and/or
end date. If

 a start date is specified, it takes
precedence over the

 associated timer schedule such that any
matching

 expirations prior to the start time will not
occur.

 Likewise, no matching expirations will occur
after any

 end date. Start/End dates are specified
using the

 XML Schema dateTime type, which follows the
ISO-8601

 standard for date(and optional
time-within-the-day)

representation.

 An optional flag can be used to control
whether

14.5. Deployment Descriptor XML Schema

568 Jakarta Enterprise Beans, Core Features DRAFT

 this timer has persistent(true) delivery
semantics or

 non-persistent(false) delivery semantics. If
not specified,

the value defaults to persistent(true).

 A time zone can optionally be associated
with a timer.

 If specified, the timer’s schedule is
evaluated in the context

 of that time zone, regardless of the default
time zone in which

 the container is executing. Time zones are
specified as an

 ID string. The set of required time zone IDs
is defined by

 the Zone Name(TZ) column of the public
domain zoneinfo database.

 An optional info string can be assigned to
the timer and

 retrieved at runtime through the
Timer.getInfo() method.

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 569

 The timerType can only be specified on
stateless session

 beans, singleton session beans, and
message-driven beans.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name=”description”

type=”javaee:descriptionType”

minOccurs=”0”

maxOccurs=”unbounded”/>

<xsd:element name=”schedule”

type=”javaee:timer-scheduleType”/>

<xsd:element name=”start”

type=”xsd:dateTime”

minOccurs=”0”/>

14.5. Deployment Descriptor XML Schema

570 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:element name=”end”

type=”xsd:dateTime”

minOccurs=”0”/>

<xsd:element name=”timeout-method”

type=”javaee:named-methodType”/>

<xsd:element name=”persistent”

type=”javaee:true-falseType”

minOccurs=”0”/>

<xsd:element name=”timezone”

type=”javaee:string”

minOccurs=”0”/>

<xsd:element name=”info”

type=”javaee:string”

minOccurs=”0”/>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 571

</xsd:sequence>

<xsd:attribute name=”id”

type=”xsd:ID”/>

</xsd:complexType>

<!-- ** -→

<xsd:complexType name=”trans-attributeType”>

<xsd:annotation>

<xsd:documentation>

 The trans-attributeType specifies how the
container must

 manage the transaction boundaries when
delegating a method

 invocation to an enterprise bean’s business
method.

The value must be one of the following:

NotSupported

Supports

14.5. Deployment Descriptor XML Schema

572 Jakarta Enterprise Beans, Core Features DRAFT

Required

RequiresNew

Mandatory

Never

</xsd:documentation>

</xsd:annotation>

<xsd:simpleContent>

<xsd:restriction base=”javaee:string”>

<xsd:enumeration value=”NotSupported”/>

<xsd:enumeration value=”Supports”/>

<xsd:enumeration value=”Required”/>

<xsd:enumeration value=”RequiresNew”/>

<xsd:enumeration value=”Mandatory”/>

<xsd:enumeration value=”Never”/>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 573

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

<!-- ** -→

 <xsd:complexType
name=”transaction-typeType”>

<xsd:annotation>

<xsd:documentation>

 The transaction-typeType specifies an
enterprise bean’s

transaction management type.

 The transaction-type must be one of the two
following:

Bean

Container

</xsd:documentation>

</xsd:annotation>

14.5. Deployment Descriptor XML Schema

574 Jakarta Enterprise Beans, Core Features DRAFT

<xsd:simpleContent>

<xsd:restriction base=”javaee:string”>

<xsd:enumeration value=”Bean”/>

<xsd:enumeration value=”Container”/>

</xsd:restriction>

</xsd:simpleContent>

</xsd:complexType>

</xsd:schema>

14.5. Deployment Descriptor XML Schema

DRAFT Jakarta Enterprise Beans, Core Features 575

Chapter 15. Packaging
The ejb-jar file is the standard format for the packaging of enterprise beans. Enterprise beans can also
be packaged within a web application module (.war file). The ejb-jar file or .war file format is used to
package un-assembled enterprise beans (the Bean Provider’s output), and to package assembled
applications (the Application Assembler’s output).

15.1. Overview
The ejb-jar file and .war file formats serve as the contract between the Bean Provider and the
Application Assembler, and between the Application Assembler and the Deployer.

An ejb-jar file produced by the Bean Provider contains one or more enterprise beans that typically do
not contain application assembly instructions. The ejb-jar file produced by an Application Assembler
(which can be the same person or organization as the Bean Provider) contains one or more enterprise
beans, plus application assembly information describing how the enterprise beans are combined into a
single application deployment unit.

A .war file is not required to contain any enterprise beans. A .war file produced by a Bean Provider
contains one or more enterprise beans that typically do not contain application assembly instructions.
A .war file produced by an Application Assembler (which can be the same person or organization as
the Bean Provider) contains one or more enterprise beans, plus application assembly information
describing how the enterprise beans are combined into a single application deployment unit.

An ejb-jar file is designed specifically for the packaging of enterprise beans. An ejb-jar file that is
packaged stand-alone or within an .ear file constitutes a Java EE module.

While the use of an ejb-jar file within a .war file is supported by this specification, an ejb-jar file within
a .war file does not constitute a Java EE module. See section See Enterprise Beans Packaged in a .war
file.

15.2. Deployment Descriptor
The EJB deployment descriptor is optional in either packaging scenario. If a deployment descriptor is
provided it must conform to the format defined in Chapter See Deployment Descriptor.

In a .war file, the deployment descriptor is stored with the name WEB-INF/ejb-jar.xml.

In an ejb-jar file that is packaged stand-alone or within an .ear file, the deployment descriptor is stored
with the name META-INF/ejb-jar.xml. If the enterprise beans are contained in an ejb-jar file packaged
within a .war file, the deployment descriptor is stored with the name WEB-INF/ejb-jar.xml. When
enterprise beans are packaged within a .war , the ejb-jar file does not constitute a separate module,
and there can portably be only one ejb-jar.xml file. See section See Enterprise Beans Packaged in a .war
file.

15.1. Overview

576 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9314
Ejb.html#a9314
Ejb.html#a5804
Ejb.html#a9314
Ejb.html#a9314

15.3. Packaging Requirements
The ejb-jar file or .war file must contain, either by inclusion or by reference, the class files of each
enterprise bean as follows:

The enterprise bean class.

The enterprise bean business interfaces, web service endpoint interfaces, and home and component
interfaces.

Interceptor classes.

We say that a jar file contains a second file “by reference” if the second file is named in the Class-Path
attribute in the Manifest file of the referencing jar file or is contained (either by inclusion or by
reference) in another jar file that is named in the Class-Path attribute in the Manifest file of the
referencing jar file.

The ejb-jar file or .war file must also contain, either by inclusion or by reference, the class files for all
the classes and interfaces that each enterprise bean class and the business interfaces, home interfaces,
component interfaces, and/or web service endpoints depend on, except Java EE and Java SE classes.
This includes their superclasses and superinterfaces, dependent classes, and the classes and interfaces
used as method parameters, results, and exceptions.

The Application Assembler must not package the stubs of the EJBHome and EJBObject interfaces in the
ejb-jar file or .war file. This includes the stubs for the enterprise beans whose implementations are
provided in the ejb-jar file or .war file as well as the referenced enterprise beans. Generating the stubs
is the responsibility of the container. The stubs are typically generated by the Container Provider’s
deployment tools for each class that extends the EJBHome or EJBObject interfaces, or they may be
generated by the container at runtime.

15.4. Enterprise Beans Packaged in a .war file
An enterprise bean class with a component-defining annotation defines an enterprise bean component
when packaged within the WEB-INF/classes directory or within a jar file within the WEB-INF/lib
directory. An enterprise bean can also be defined via the WEB-INF/ejb-jar.xml deployment descriptor.

A .war file may contain enterprise bean classes in a combination of classes within the WEB-INF/classes
directory and one or more jar files within the WEB-INF/lib directory.

15.3. Packaging Requirements

DRAFT Jakarta Enterprise Beans, Core Features 577

 _A “ejb-jar” file in the WEB-INF/lib
directory that contains enterprise beans is not considered an
independent Java EE “module” in the way that a .war file, stand-alone
ejb-jar file, or an .ear-level ejb-jar file is considered a module. Such
an “ejb-jar file” does not define its own module name or its own
namespace for ejb-names, environment dependencies, persistence units,
etc. All such namespaces are scoped to the enclosing .war file. In that
sense, the packaging of enterprise bean classes in an “ejb-jar” file in
the WEB-INF/lib directory is merely a convenience. It is semantically
equivalent to packaging the classes within WEB-INF/classes_ directory
.

A .war file may contain an ejb-jar.xml file. If present, the ejb-jar.xml is packaged as WEB-INF/ejb-
jar.xml. If an ejb-jar.xml is present, it applies to all enterprise beans defined by the .war file,
independently of whether they are packaged with the WEB-INF/classes directory or in a jar file within
WEB-INF/lib directory. The packaging of an ejb-jar.xml file anywhere else within the .war file is not
portable and may result in a deployment error.

15.4.1. Class Loading

Enterprise beans (and any related classes) packaged in a .war file have the same class loading
requirements as other non-enterprise bean classes packaged in a .war file. This means, for example,
that a servlet packaged within a .war file is guaranteed to have visibility to an enterprise bean
component packaged within the same .war file, and vice versa. Detailed class loading requirements for
web modules are covered in the Java EE Platform specification [See Java™ Platform].

15.4.2. Component Environment

In a .war file, there is a single component naming environment shared between all the components
(web, enterprise bean, etc.) defined by the module. Each enterprise bean defined in the .war file shares
this single component environment namespace with all other enterprise beans defined by the .war file
and with all other web components defined by the .war file.

The Bean Provider should be aware of this name scoping behavior when selecting names of
environment dependencies for enterprise beans packaged within a .war file. Unlike enterprise beans
packaged in an ejb-jar file outside a .war file, the names of environment entries defined by an
enterprise bean inside a . war file can clash with names defined by other components. Likewise,
enterprise beans packaged in a .war file have visiblity to all environment entries defined by any other
components in the .war file, including any entries defined within the web.xml file. This is also true of
the advanced case in which the ejb-jar.xml file is used to define multiple bean components based on
the same bean class. Extra caution should be used when configuring environment dependencies for
such bean components.

15.4. Enterprise Beans Packaged in a .war file

578 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9861

15.4.3. Visibility of the Local Client View

The local client view (including the no-interface view) of an enterprise bean component defined within
a .war file is only required to be accessible to components within the same .war file. Applications
needing access to the local client view of an enterprise bean from a different module in the same
application should use an ejb-jar file outside the .war file to define the enterprise bean that exposes the
local client view.

15.4.4. Ejb-names

A .war file has a single namespace for the ejb-names of any enterprise beans it defines. This single ejb-
name namespace applies to all enterprise beans defined in the .war file, regardless of where in the
.war file the enterprise beans are defined and regardless of whether they are defined by means of the
ejb-jar.xml deployment descriptor or by annotations.

15.4.5. Example

package com.acme;

@Stateless

public class FooBean \{

public void foo() \{ ... }

}

FooBean is a stateless session bean with a component-defining annotation and a no-interface view. It is
packaged in a .war file under a WEB-INF/classes subdirectory corresponding to its package name. The
.war file also contains a Servlet.

webejb.war:

WEB-INF/classes/com/acme/FooServlet.class

WEB-INF/classes/com/acme/FooBean.class

15.5. Deployment Descriptor and Annotation Processing
The following sections describe the cases that the deployment tool must consider when deciding
whether to process annotations on the enterprise bean classes in a module.

15.5. Deployment Descriptor and Annotation Processing

DRAFT Jakarta Enterprise Beans, Core Features 579

15.5.1. Ejb-jar Deployment Descriptor and Annotation Processing

See Ejb-jar Annotation Processing Requirements describes the requirements for determining when to
process annotations on the classes in a standalone ejb-jar file or an ejb-jar file packaged within an . ear
file. If the deployment descriptor is not included or is included but not marked metadata-complete , the
deployment tool will process annotations.

===

Ejb-jar Annotation Processing Requirements

Deployment Descriptor metadata-complete? process annotations?

ejb-jar_2_1 or earlier N/A No

ejb-jar_3_x Yes No

ejb-jar_3_x No Yes

none N/A Yes

15.5.2. .war Deployment Descriptor and Annotation Processing

See .war Annotation Processing Requirements for enterprise beans describes the requirements for
determining when to process annotations on the enterprise bean classes of a .war file. If the .war file
contains an ejb-jar.xml file, the deployment tool will process annotations unless the ejb-jar.xml has
been marked metadata-complete. If the . war file does not contain an ejb-jar.xml file, the deployment
tool will process annotations unless the web.xml is marked metadata-complete or its version is prior to
web-app_2_5.

===

.war Annotation Processing Requirements for enterprise beans

ejb-jar.xml ejb-jar.xml
metadata-
complete?

web.xml web.xml
metadata-
complete?

process
annotations?

ejb-jar_3_x Yes N/A N/A No

ejb-jar_3_x No N/A N/A Yes

none N/A
web-app_2_5

or later

Yes No

15.5. Deployment Descriptor and Annotation Processing

580 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9344
Ejb.html#a9360

ejb-jar.xml ejb-jar.xml
metadata-
complete?

web.xml web.xml
metadata-
complete?

process
annotations?

none N/A
web-app_2_5

or later

No Yes

none N/A
web-app_2_4

or earlier

N/A No

none N/A none N/A Yes

.

15.6. The Client View and the ejb-client JAR File
The client view of an enterprise bean is comprised of the business interfaces, no-interface view, or
home and component interfaces of the referenced enterprise bean, and other classes that these
interfaces depend on, such as their superclasses and superinterfaces, the classes and interfaces used as
method parameters, results, and exceptions. The serializable application value classes, including the
classes which may be used as members of a collection in a remote method call to an enterprise bean,
are part of the client view. An example of an application value class might be an Address class used as
a parameter in a method call.

The ejb-jar file or .war file producer can create an ejb-client JAR file for the ejb-jar file or .war file. The
ejb-client JAR file contains all the class files that a client program needs to use the client view of the
enterprise beans that are contained in the ejb-jar file or .war file. If this option is used, it is the
responsibility of the Application Assembler to include all the classes necessary to comprise the client
view of an enterprise bean in the ejb-client JAR file.

The ejb-client JAR file is specified in the ejb-jar.xml deployment descriptor of the ejb-jar file or .war file
using the ejb-client-jar element. The value of the ejb-client-jar element is the path name specifying the
location of the ejb-client JAR file in the containing Java EE Enterprise Application Archive (.ear) file.
The path name is relative to the location of the referencing ejb-jar file or . war file.

The EJB specification does not specify whether an ejb-jar file or .war file should include by copy or by
reference the classes that are in an ejb-client JAR file, but they must be included either one way or the
other. If the by-copy approach is used, the producer simply includes all the class files in the ejb-client

15.6. The Client View and the ejb-client JAR File

DRAFT Jakarta Enterprise Beans, Core Features 581

JAR file also in the ejb-jar file or .war file. If the by-reference approach is used, the ejb-jar file or .war
file producer does not duplicate the content of the ejb-client JAR file in the ejb-jar file or .war file, but
instead uses a Manifest Class-Path entry in the ejb-jar file or .war file to specify that the ejb-jar file or
.war file depends on the ejb-client JAR at runtime. The use of the Class-Path entries in JAR files and
.war files is explained in the Java EE Platform specification [See Java™ Platform].

15.7. Requirements for Clients
The Application Assembler must construct the application to insure that the client view classes are
available to the client at runtime. The client of an enterprise bean may be another enterprise bean
packaged in the same ejb-jar or different ejb-jar file, another enterprise bean packaged in the same
.war file or different .war file, or the client may be another Java EE component, such as a web
component.

When clients packaged in jar files refer to enterprise beans, the jar file that contains the client, e.g. an
ejb-jar file, should contain, either by inclusion or by reference, all the client view classes of the
referenced beans. The client view classes may have been packaged in an ejb-client JAR file. In other
words, the jar file that contains the client should contain one of the following:

a reference to the ejb-client JAR file

a reference to the ejb-jar file that contains the client view classes

a copy of the client view classes

The client may also require the use of system value classes (e.g., the serializable value classes
implementing the javax.ejb.Handle, javax.ejb.HomeHandle, javax.ejb.EJBMetaData,
java.util.Enumeration, java.util.Collection, and java.util.Iterator interfaces), although these are not
packaged with the application. It is the responsibility of the provider of the container hosting the
referenced beans to provide the system value classes and make them available for use when the client
is deployed. See Section See System Value Classes.

15.8. Example
In this example, the Bean Provider has chosen to package the enterprise bean client view classes in a
separate .jar file and to reference that .jar file from the other .jar files that need those classes. Those
classes are needed both by ejb2.jar , packaged in the same application as ejb1.jar , and by ejb3.jar ,
packaged in a different application. Those classes are also needed by ejb1.jar itself because they define
the remote interface of the enterprise beans in ejb1.jar , and the Bean Provider has chosen the by
reference approach to making these classes available.

The deployment descriptor for ejb1.jar names the client view jar file in the ejb-client-jar element.
Because ejb2.jar requires these client view classes, it includes a Class-Path reference to ejb1_client.jar .

The Class-Path mechanism must be used by components in app2.ear to reference the client view jar file
that corresponds to the enterprise beans packaged in ejb1.jar of app1.ear . Those enterprise beans are

15.7. Requirements for Clients

582 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9861
Ejb.html#a3410

referenced by enterprise beans in ejb3.jar . Note that the client view jar file must be included directly
in the app2.ear file.

app1.ear:

META-INF/application.xml

ejb1.jar Class-Path: ejb1_client.jar

deployment descriptor contains:

<ejb-client-jar>ejb1_client.jar</ejb-client-jar>

ejb1_client.jar

ejb2.jar Class-Path: ejb1_client.jar

app2.ear:

META-INF/application.xml

ejb1_client.jar

ejb3.jar Class-Path: ejb1_client.jar

15.8. Example

DRAFT Jakarta Enterprise Beans, Core Features 583

Chapter 16. Runtime Environment
This chapter defines the application programming interfaces (APIs) that a compliant EJB container
must make available to the enterprise bean instances at runtime. These APIs can be used by portable
enterprise beans because the APIs are guaranteed to be available in all EJB containers.

The set of required APIs is divided into two categories: a complete set and a minimum set. The
minimum set is also referred to as “EJB Lite.” This reflects the ability of a Server Provider to provide an
EJB container within a product that implements the Full Java EE Platform or within a subset profile
such as the Java EE Web Profile. The complete set is required within an implementation of the Full Java
EE Platform. The minimum set must be supported within an implementation of the Java EE Web
Profile. Profile requirements are described within the Java EE Platform specification See Java™
Platform.

The chapter also defines the restrictions that the EJB Container Provider can impose on the
functionality that it provides to the enterprise beans. These restrictions are necessary to enforce
security and to allow the container to properly manage the runtime environment.

16.1. EJB Lite and Other EJB API Groups
The EJB API is comprised of a large feature set with support for implementing business logic in a wide
variety of enterprise applications. However, the full range of API contracts is not always crucial for all
runtime environments. In addition, the breadth of the full API can present challenges for developers
just getting started with the Enterprise JavaBeans technology.

For these reasons this specification defines a minimal subset of the EJB API known as EJB Lite. EJB Lite
is not a product. Rather, it is a proper subset of the full EJB API that includes a small, powerful
selection of EJB features suitable for writing portable transactional business logic. The definition of EJB
Lite gives vendors an option to implement only a portable subset of the EJB API within their product.
The vastly reduced size of the feature set makes it suitable for inclusion in a wider range of Java
products, many of which have much smaller installation and runtime footprints than a typical full Java
EE implementation.

An EJB Lite application is merely an EJB application whose EJB API usage falls within the EJB Lite
subset. There are no special APIs defined only for EJB Lite. Therefore, any EJB Lite application can be
deployed on any Java EE product that implements Enterprise JavaBeans technology, whether that
product supports EJB Lite or the full EJB API.

As detailed in See EJB API Groups, the EJB Lite API is composed of the following subset of the EJB API:

Stateless, stateful, and singleton session bean components only

Local business interface and no-interface view only

Container-managed transactions and bean-managed transactions

16.1. EJB Lite and Other EJB API Groups

584 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9861
Ejb.html#a9861
Ejb.html#a9442

Declarative and programmatic security

Interceptors

Local asynchronous session bean invocations

Non-persistent EJB Timer Service

Deployment descriptor support (ejb-jar.xml)

===

EJB API Groups

GROUP CONTENT Full EJB API

EJB Lite COMPONENTS:

Session Beans (stateful, stateless,
singleton)

SESSION BEAN CLIENT VIEWS:

Local business interface

No-interface

SERVICES:

Interceptors

Non-persistent EJB Timer
Service

Local asynchronous session
bean invocations

Container-managed transactions

Bean-managed transactions

Declarative and Programmatic
Security

PACKAGING:

Session beans packaged in a
.war file

Required

16.1. EJB Lite and Other EJB API Groups

DRAFT Jakarta Enterprise Beans, Core Features 585

GROUP CONTENT Full EJB API

Message-Driven Beans COMPONENTS:

Message-driven Beans

DEPENDENCIES:

Standalone connector with
support for Message Inflow and
MessageEndpoint deployment

Required

EJB 3.x Remote SESSION BEAN CLIENT VIEWS:

3.x Remote Business view

SERVICES:

Remote asynchronous session
bean invocations

Required

Persistent EJB Timer Service SERVICES:

Persistent EJB Timer Service

Required

JAX-WS Web Service Endpoints SESSION BEAN CLIENT VIEWS:

JAX-WS Web Service Endpoints

DEPENDENCIES:

JAX-WS API

Required

Embeddable EJB Container SERVICES:

Embeddable EJB Container

Optional

16.1. EJB Lite and Other EJB API Groups

586 Jakarta Enterprise Beans, Core Features DRAFT

GROUP CONTENT Full EJB API

EJB 2.x API COMPONENTS:

Session Beans

SESSION BEAN CLIENT VIEWS:

2.x Local and Remote Home and
Component views

SERVICES:

TimedObject interface

SessionSynchronization
interface

RMI-IIOP Interoperability

Required

Entity Beans COMPONENTS:

2.x / 1.x CMP/BMP Entity Beans

SERVICES:

EJB QL

Optional

JAX-RPC Web Service Endpoints SESSION BEAN CLIENT VIEWS:

JAX-RPC Web Service Endpoints

Optional

16.1.1. Support for Other EJB API Groups in an EJB Lite Container

An EJB Lite container provider may support EJB features in addition to the “EJB Lite” group defined in
See EJB API Groups. If it does, the following rules apply:

If any feature in a group is supported, the whole group must be supported.

Support for these features must adhere to the requirements of this specification.

Except for the programmatic timers in the Persistent EJB Timer Service group, the EJB Container must
detect that an application depends on a feature that is not supported and fail deployment of the
application. A product may offer a deployment option to force deployment of applications that use EJB
features not supported by the product. Use of these features must fail at runtime.

If the Persistent EJB Timer Service group is not supported, and an application attempts to create a

16.1. EJB Lite and Other EJB API Groups

DRAFT Jakarta Enterprise Beans, Core Features 587

Ejb.html#a9442

programmatic persistent timer, the EJB container must throw the EJBException when the API is
invoked.

If JMS message-driven beans are supported, the JMS API (see See Java™ Message Service) must be
supported.

If JAX-WS Web Service Endpoints are supported, the web service interoperability rules specified in See
Mapping to Web Service Protocols must be observed.

To use a session bean written to the EJB 3.x API, and adapted for use with an earlier client view,
support for the EJB 2.x API group is required.

To use an application client to access an EJB 3.x remote session bean, the application client container
must be supported.

Support for deployment descriptor versions must observe the rules in See Support for Existing
Applications.

16.1.2. Integration with Other Technologies

This section describes the additional requirements that apply to an EJB Container when combined in a
product that supports other Java EE technologies.

If Java Persistence API is supported, the EJB Container must support the use of the Java Persistence API
in conformance with the contracts defined in the Java Persistence API specification See Java™
Persistence API and the rules specified in See EJB Container Provider’s Responsibilities must be
observed.

If JAX-RS API is supported, singleton and stateless session beans must be supported as JAX-RS root
resource classes, providers and Application subclasses as defined by the JAX-RS specification See The
Java API for RESTful.

16.2. Bean Provider’s Responsibilities
This section describes the view and responsibilities of the Bean Provider.

16.2.1. APIs Provided by Container

The requirements on APIs provided by the Container are determined by the associated profile
specification, e.g. the Java EE specification See Java™ Platform or the Web Profile Specification.

16.2.2. Programming Restrictions

This section describes the programming restrictions that a Bean Provider must follow to ensure that
the enterprise bean is portable and can be deployed in any compliant EJB container. The restrictions
apply to the implementation of the business methods. Section See Container Provider’s Responsibility,

16.2. Bean Provider’s Responsibilities

588 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9862
Ejb.html#a179
Ejb.html#a179
Ejb.html#a9696
Ejb.html#a9696
Ejb.html#a9851
Ejb.html#a9851
Ejb.html#a9838
Ejb.html#a9889
Ejb.html#a9889
Ejb.html#a9861
Ejb.html#a9586

which describes the container’s view of these restrictions, defines the programming environment that
all EJB containers must provide.

An enterprise bean must not use read/write static fields. Using read-only static fields is allowed.
Therefore, it is recommended that all static fields in the enterprise bean class be declared as final.

This rule is required to ensure consistent runtime semantics because while some EJB containers may
use a single JVM to execute all enterprise bean’s instances, others may distribute the instances across
multiple JVMs.

An enterprise bean must not use thread synchronization primitives to synchronize execution of
multiple instances, unless it is a singleton session bean with bean-managed concurrency.

This is for the same reason as above. Synchronization would not work if the EJB container distributed
enterprise bean’s instances across multiple JVMs.

An enterprise bean must not use the AWT functionality to attempt to output information to a display,
or to input information from a keyboard.

Servers do not allow direct interaction between an application program and a keyboard/display
attached to the server system.

An enterprise bean should exercise caution when using the Java I/O package to attempt to access files
and directories in the file system.

The file system APIs are not well-suited for business components to access data. Files might not be
accessible from all instances, or their content might be different on different instances, and
coordinating updates to the file can be difficult. Business components should use a resource manager
API, such as JDBC, to store data.

An enterprise bean must not attempt to listen on a socket, accept connections on a socket, or use a
socket for multicast.

The EJB architecture allows an enterprise bean instance to be a network socket client, but it does not
allow it to be a network server. Allowing the instance to become a network server would conflict with
the basic function of the enterprise bean— to serve the EJB clients.

The enterprise bean must not attempt to query a class to obtain information about the declared
members that are not otherwise accessible to the enterprise bean because of the security rules of the
Java language. The enterprise bean must not attempt to use the Reflection API to access information
that the security rules of the Java programming language make unavailable.

Allowing the enterprise bean to access information about other classes and to access the classes in a
manner that is normally disallowed by the Java programming language could compromise security.

The enterprise bean must not attempt to create a class loader; set the context class loader; set security
manager; create a new security manager; stop the JVM; or change the input, output, and error streams.

16.2. Bean Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 589

These functions are reserved for the EJB container. Allowing the enterprise bean to use these functions
could compromise security and decrease the container’s ability to properly manage the runtime
environment.

The enterprise bean must not attempt to set the socket factory used by ServerSocket, Socket, or the
stream handler factory used by URL.

These networking functions are reserved for the EJB container. Allowing the enterprise bean to use
these functions could compromise security and decrease the container’s ability to properly manage the
runtime environment.

The enterprise bean must not attempt to manage threads. The enterprise bean must not attempt to
start, stop, suspend, or resume a thread, or to change a thread’s priority or name. The enterprise bean
must not attempt to manage thread groups.

These functions are reserved for the EJB container. Allowing the enterprise bean to manage threads
would decrease the container’s ability to properly manage the runtime environment.

The enterprise bean must not attempt to directly read or write a file descriptor.

Allowing the enterprise bean to read and write file descriptors directly could compromise security.

The enterprise bean must not attempt to obtain the security policy information for a particular code
source.

Allowing the enterprise bean to access the security policy information would create a security hole.

The enterprise bean must not attempt to load a native library.

This function is reserved for the EJB container. Allowing the enterprise bean to load native code would
create a security hole.

The enterprise bean must not attempt to gain access to packages and classes that the usual rules of the
Java programming language make unavailable to the enterprise bean.

This function is reserved for the EJB container. Allowing the enterprise bean to perform this function
would create a security hole.

The enterprise bean must not attempt to define a class in a package.

This function is reserved for the EJB container. Allowing the enterprise bean to perform this function
would create a security hole.

The enterprise bean must not attempt to access or modify the security configuration objects (Policy,
Security, Provider, Signer, and Identity).

These functions are reserved for the EJB container. Allowing the enterprise bean to use these functions
could compromise security.

16.2. Bean Provider’s Responsibilities

590 Jakarta Enterprise Beans, Core Features DRAFT

The enterprise bean must not attempt to use the subclass and object substitution features of the Java
Serialization Protocol.

Allowing the enterprise bean to use these functions could compromise security.

The enterprise bean must not attempt to pass this as an argument or method result. The enterprise
bean must pass the result of SessionContext.getBusinessObject , SessionContext.getEJBObject,
SessionContext.getEJBLocalObject , EntityContext.getEJBObject, or EntityContext.getEJBLocalObject
instead.

To guarantee portability of the enterprise bean’s implementation across all compliant EJB containers,
the Bean Provider should test the enterprise bean using a container with the security settings defined
in Table See Java 2 Platform Security Policy for a Standard EJB Container. That table defines the
minimal functionality that a compliant EJB container must provide to the enterprise bean instances at
runtime.

16.3. Container Provider’s Responsibility
This section defines the container’s responsibilities for providing the runtime environment to the
enterprise bean instances. The requirements described here are considered to be the minimal
requirements; a container may choose to provide additional functionality that is not required by the
EJB specification.

The following subsections describes the requirements in more detail.

The following table defines the Java 2 platform security permissions that the EJB container must be
able to grant to the enterprise bean instances at runtime. The term “grant” means that the container
must be able to grant the permission, the term “deny” means that the container should deny the
permission.

===

Java 2 Platform Security Policy for a Standard EJB Container

Permission name

EJB Container policy

java.security.AllPermission

deny

java.awt.AWTPermission

deny

java.io.FilePermission

16.3. Container Provider’s Responsibility

DRAFT Jakarta Enterprise Beans, Core Features 591

Ejb.html#a9591

deny

java.net.NetPermission

deny

java.util.PropertyPermission

grant “*”, “read

deny all other

java.lang.reflect.ReflectPermission

deny

java.lang.RuntimePermission

grant “queuePrintJob”

grant “loadLibrary”

deny all other

java.io.FilePermission

grant “*”, “read,write”

deny all other

java.lang.SecurityPermission

deny

java.io.SerializablePermission

deny

java.net.SocketPermission

grant ”*”, “connect” 122

deny all other

Some containers may allow the Deployer to grant more, or fewer, permissions to the enterprise bean
instances than specified in Table See Java 2 Platform Security Policy for a Standard EJB Container.
Support for this is not required by the EJB specification. Enterprise beans that rely on more or fewer
permissions will not be portable across all EJB containers.

16.3. Container Provider’s Responsibility

592 Jakarta Enterprise Beans, Core Features DRAFT

#a10342
Ejb.html#a9591

16.3.1. EJB Interfaces and Annotations Requirements

The container must implement the EJB interfaces as defined in this specification.

The container must implement the semantics of the metadata annotations that are supported by EJB
API as defined by this specification.

The container must support the use of the Java Persistence API in conformance with the contracts
defined in the Java Persistence API specification See Java™ Persistence API.

16.3.2. JNDI Requirements

At the minimum, the EJB container must provide a JNDI API name space to the enterprise bean
instances. The EJB container must make the name space available to an instance when the instance
invokes the javax.naming.InitialContext default (no-arg) constructor.

An EJB container within an implementation of the Web Profile or the embeddable EJB container, must
make available the following objects in the name space:

The local business interfaces of other enterprise beans.

References to the no-interfaces view of other enterprise beans.

UserTransaction objects

EJBContext objects

The resource factories used by the enterprise beans.

The entity managers and entity manager factories used by the enterprise beans.

TimerService objects for non-persistent timers

An EJB container within an implementation of the Full Java EE Platform must make available the
following objects in the name space:

All objects listed as available in the Web Profile.

The remote business interfaces of other enterprise beans.

The web service interfaces used by the enterprise beans.

The home interfaces of other enterprise beans.

ORB objects

TimerService objects for persistent timers

All enterprise beans deployed within the same .war file are presented with the same JNDI name space.

16.3. Container Provider’s Responsibility

DRAFT Jakarta Enterprise Beans, Core Features 593

Ejb.html#a9851

In addition, all the instances of the same enterprise bean deployed within an ejb-jar file must be
presented with the same JNDI API name space.

16.3.3. JTA API Requirements

The EJB Container must include the JTA javax.transaction API.

The EJB Container must provide the javax.transaction.UserTransaction interface to enterprise beans
with bean-managed transaction demarcation by dependency injection, through the
javax.ejb.EJBContext interface, and also in JNDI under the name java:comp/UserTransaction, in the
cases required by the EJB specification.

The EJB Container must provide the javax.transaction.TransactionSynchronizationRegistry interface
by dependency injection and in JNDI under the name java:comp/TransactionSynchronizationRegistry.

It is illegal to associate JTA transactional interceptors with Enterprise JavaBeans. The EJB Container
should fail deployment of such applications.123

The other JTA interfaces are low-level transaction manager and resource manager integration
interfaces, and are not intended for direct use by enterprise beans.

16.3.4. JDBC™ API Requirements

The EJB Container must include the JDBC javax.sql API and provide its functionality to the enterprise
bean instances, with the exception of the low-level XA and connection pooling interfaces. These low-
level interfaces are intended for integration of a JDBC driver with an application server, not for direct
use by enterprise beans.

16.3.5. JMS API Requirements

An implementation requiring the full EJB API must include the JMS 2.0 API and provide its
functionality to the enterprise bean instances, with the exception of the low-level interfaces that are
intended for integration of a JMS provider with an application server, not for direct use by enterprise
beans. These interfaces include: javax.jms.ServerSession , javax.jms.ServerSessionPool ,
javax.jms.ConnectionConsumer , and all the javax.jms XA interfaces.

In addition, the following methods are for use by the container only. Enterprise beans must not call
these methods: __

javax.jms.Session.setMessageListener

javax.jms.Session.getMessageListener

16.3. Container Provider’s Responsibility

594 Jakarta Enterprise Beans, Core Features DRAFT

#a10343

javax.jms.Session.run

javax.jms.Connection.createConnectionConsumer

javax.jms.Connection.createSharedConnectionConsumer

javax.jms.Connection.createDurableConnectionConsumer

javax.jms.Connection.createSharedDurableConnectionConsumer

The following methods must not be called by enterprise beans because they may interfere with the
connection management by the container:

javax.jms.Connection.setExceptionListener

javax.jms.Connection.stop

javax.jms.Connection.setClientID

javax.jms.JMSContext.setExceptionListener

javax.jms.JMSContext.stop

javax.jms.JMSContext.setClientID

Enterprise beans must not call the following methods:

javax.jms.MessageConsumer.setMessageListener

javax.jms.MessageConsumer.getMessageListener

javax.jms.JMSContext.setMessageListener

javax.jms.JMSContext.getMessageListener

An asynchronous send is not permitted in an enterprise bean. The following methods must therefore
not be called by enterprise beans:

javax.jms.Session.send(Message message,

CompletionListener completionListener)

javax.jms.Session.send(Message message, int deliveryMode,

16.3. Container Provider’s Responsibility

DRAFT Jakarta Enterprise Beans, Core Features 595

int priority, long timeToLive,

CompletionListener completionListener)

javax.jms.Session.send(Destination destination, Message message,

CompletionListener completionListener)

javax.jms.Session.send(Destination destination, Message message,

 int deliveryMode, int priority, long
timeToLive,

CompletionListener completionListener)

javax.jms.JMSProducer.setAsync

This specification recommends, but does not require, that the container throw the
javax.jms.JMSException or a javax.jms.JMSRuntimeException (depending on the method signature) if
enterprise beans call any of the methods listed in this section.

16.3.6. Argument Passing Semantics

An enterprise bean’s remote business interfaces and/or remote home and remote component
interfaces are remote interfaces for Java RMI. The container must ensure the semantics for passing
arguments conforms to Java RMI-IIOP. Non-remote objects must be passed by value.

Specifically, the EJB container is not allowed to pass non-remote objects by reference on inter-EJB
invocations when the calling and called enterprise beans are collocated in the same JVM. Doing so
could result in the multiple beans sharing the state of a Java object, which would break the enterprise
bean’s semantics. Any local optimizations of remote interface calls must ensure the semantics for
passing arguments conforms to Java RMI-IIOP.

An enterprise bean’s local business interfaces and/or local home and local interfaces are local Java
interfaces . The caller and callee enterprise beans that make use of these local interfaces are typically
collocated in the same JVM. The EJB container must ensure the semantics for passing arguments across
these interfaces conforms to the standard argument passing semantics of the Java programming
language.

16.3. Container Provider’s Responsibility

596 Jakarta Enterprise Beans, Core Features DRAFT

16.3.7. Other Requirements

The assertions contained in the Javadoc specification of the EJB interfaces are required functionality
and must be implemented by compliant containers.

16.3. Container Provider’s Responsibility

DRAFT Jakarta Enterprise Beans, Core Features 597

Chapter 17. Compatibility and Migration
This chapter addresses issues of compatibility and migration between EJB 3.2 and earlier components
and clients.

17.1. Support for Existing Applications
Existing EJB 3.1 and earlier applications that do not include entity bean components and JAX-RPC
based web services endpoints124 must be supported to run unchanged in EJB 3.2 containers.

Full EJB 3.2 implementations must support EJB 1.1, EJB 2.0, EJB 2.1, EJB 3.0, and EJB 3.1 deployment
descriptors for applications written to earlier versions of the Enterprise JavaBeans specification. EJB
3.2 Lite implementations must support EJB 3.0, and EJB 3.1 deployment descriptors for applications
written to the EJB 3.x versions of the Enterprise JavaBeans specification.

17.2. Default Stateful Session Bean Concurrency
Behavior
Prior versions of the EJB specification allowed the container to choose the default behavior in the
event of concurrent access attempts to a stateful session bean instance. This specification requires a
default of serialized requests in the face of concurrency. This means by default clients will not receive
the javax.ejb.ConcurrentAccessException when concurrent access occurs for a request. This should
have minimal impact to correctly written applications since even with the prior behavior there was no
guarantee of receiving such an exception due to the inherent race conditions. Applications wishing to
receive an exception in the face of concurrency can request that behavior through newly defined
metadata. See See Serializing Session Bean Methods for more details.

17.3. Default Application Exception Subclassing
Behavior
The EJB 3.0 Specification was ambiguous with respect to whether the designation of an unchecked
exception as an application exception applied to that exception’s subclasses. The EJB 3.1 specification
clarified that, by default, the application exception designation is inherited by subclasses. Non-
inheriting behavior may be specified by means of the ApplicationException annotation and/or the
deployment descriptor. See See Application Exceptions for more detail.

17.4. Interoperability of EJB 3.2 and Earlier Components
This release of Enterprise JavaBeans supports migration and interoperability among client and server
components written to different versions of the EJB APIs as described below.

17.1. Support for Existing Applications

598 Jakarta Enterprise Beans, Core Features DRAFT

#a10344
Ejb.html#a778
Ejb.html#a2942

17.4.1. Clients written to the EJB 2.x APIs

An enterprise bean that is written to the EJB 2.1 or earlier API release may be a client of components
written to the EJB 3.x API using the earlier EJB APIs when deployed in an EJB 3.x container.

Such an EJB 2.1 or earlier client component does not need to be rewritten or recompiled to be a client
of a component written to the EJB 3.x API.

Such clients may access components written to the EJB 3.x APIs and components written to the earlier
EJB APIs within the same transaction.

See See Adapting EJB 3.x Session Beans to Earlier Client Views for a discussion of the mechanisms that
are used to enable components written to the EJB 3.x API to be accessed and utilized by clients written
to earlier versions of the EJB specification.

17.4.2. Clients written to the EJB 3.x API

A client written to the EJB 3.x API may be a client of a component written to the EJB 2.1 or earlier API.

Such clients may access components written to the EJB 3.x APIs and components written to the earlier
EJB APIs within the same transaction.

Such clients access components written to the earlier EJB APIs using the EJB 2.1 client view home and
component interfaces. The EJB annotation (or the ejb-ref and ejb-local-ref deployment descriptor
elements) may be used to specify the injection of home interfaces into components that are clients of
beans written to the earlier EJB client view.

17.4.3. Combined use of EJB 2.x and EJB 3.x persistence APIs

EJB clients may access Java Persistence entities and/or the EntityManager together with EJB 2.x entity
beans within the same transaction as well as within separate transactions.125

17.5. Adapting EJB 3.x Session Beans to Earlier Client
Views
Clients written to the EJB 2.1 and earlier client view depend upon the existence of a home and
component interface.

A session bean written to the EJB 3.x API may be adapted to such earlier preexisting client view
interfaces.

The session bean designates the interfaces to be adapted by using the RemoteHome and LocalHome
metadata annotations on the bean class (or equivalent deployment descriptor elements). The
corresponding remote and local component interfaces are not explicitly specified when using these
annotations. Rather, they are derived from the Home and LocalHome interfaces respectively.

17.5. Adapting EJB 3.x Session Beans to Earlier Client Views

DRAFT Jakarta Enterprise Beans, Core Features 599

Ejb.html#a9716
#a10345

When the client is deployed, the container classes that implement the EJB 2.1 home and remote
component interfaces (or local home and local component interfaces) referenced by the client must
provide the implementation of the javax.ejb.EJBHome and javax.ejb.EJBObject interfaces (or the
javax.ejb.EJBLocalHome and javax.ejb.EJBLocalObject interfaces) respectively.

In addition, the container implementation classes must implement the methods of the home and
comonent interfaces to apply to the EJB 3.x component being referenced as described below.

17.5.1. Stateless Session Beans

The invocation of the home create() method must return the corresponding local component interface
or remote component interface of the bean. This may or may not cause the creation of the bean
instance, depending on the container’s implementation strategy. For example, the container may
preallocate bean instances (e.g., in a pooling strategy) or may defer the creation of the bean instance
until the first invocation of a business method on the bean class. When the bean instance is created,
the container invokes the setSessionContext method, if any, performs any other dependency injection,
and invokes the PostConstruct lifecycle callback methods, if any, as specified in See Session Bean
Creation.

It is likewise implementation-dependent as to whether the invocation of the EJBHome remove(Handle)
or EJBObject or EJBLocalObject remove() methods causes the immediate removal of the bean instance,
depending on the container’s implementation strategy. When the bean instance is removed, the
PreDestroy callback methods, if any, are invoked, as specified in See Stateless Session Bean Lifecycle
State Diagram

The invocations of the business methods of the component interface are delegated to the bean class.

17.5.2. Stateful Session Beans

The invocation of the home create<METHOD>() method causes construction of the bean instance,
invocation of the PostConstruct lifecycle callbacks, if any, and invocation of the matching Init method,
and returns the corresponding local component interface or remote component interface of the bean.
Invocations of the PostConstruct lifecycle callback methods occur in a transaction context determined
by the methods’ transaction attributes, if any.

The invocation of the EJBHome remove(Handle) or the EJBObject or EJBLocalObject remove() method
causes the invocation of the PreDestroy lifecycle callback method(s), if any, and removal of the bean
instance, as described in section See Stateful Session Bean Removal. Invocation of the PreDestroy
lifecycle callback methods occur in a transaction context determined by the methods’ transaction
attributes, if any.

The invocations of the business methods of the component interface are delegated to the bean class.

The Init annotation is used to specify the correspondence of a method on the bean class with a
create<METHOD> method of the adapted EJBHome and/or adapted EJBLocalHome interface. The result
type of such an Init method is required to be void, and its parameter types must be exactly the same as

17.5. Adapting EJB 3.x Session Beans to Earlier Client Views

600 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a756
Ejb.html#a756
Ejb.html#a1077
Ejb.html#a1077
Ejb.html#a767

those of the referenced create<METHOD> method.

17.5. Adapting EJB 3.x Session Beans to Earlier Client Views

DRAFT Jakarta Enterprise Beans, Core Features 601

Chapter 18. Embeddable Usage
The embeddable API is designed to support the execution of EJB applications within a Java SE
environment only. Use of the javax.ejb.embeddable package is not allowed from an application
running in a Java EE environment. Unlike traditional Java EE server-based execution, embeddable
usage allows client code and its corresponding enterprise beans to run within the same JVM and class
loader. This provides better support for testing, offline processing (e.g. batch), and the use of the EJB
programming model in desktop applications.

Support for the embeddable API is not required. However, any product that supports the embeddable
API must adhere to the requirements of this specification.

18.1. Overview
Embeddable usage requirements allow client code to instantiate an EJB container that runs within its
own JVM and classloader. The client uses a specification-defined bootstrapping API to start the
embeddable EJB container and identify the set of enterprise bean components for execution.

The embeddable EJB container provides a managed environment with support for the same basic
services that exist within a Java EE runtime: injection, access to a component environment, container-
managed transactions, etc. In general, enterprise bean components are unaware of the kind of
managed environment in which they are running. This allows maximum reusability of enterprise
components across a wide range of testing and deployment scenarios without significant rework.

18.2. Bootstrapping API
The embeddable EJB container is instantiated using a bootstrapping API defined within the javax.ejb
package. By default, the embeddable container uses the JVM class path to scan for the enterprise bean
modules to be initialized. The client can override this behavior during setup by specifying an
alternative set of target modules.

18.2.1. EJBContainer

The javax.ejb.embeddable.EJBContainer abstract class represents an instance of an embeddable
container. It contains factory methods for creating a container instance. The client initializes a new
embeddable container by calling the createEJBContainer method of the
javax.ejb.embeddable.EJBContainer class.

For example,

EJBContainer ec = EJBContainer.createEJBContainer();

By default, the embeddable container searches the JVM classpath (the value of the Java System
property java.class.path) to find the set of EJB modules for initialization. A classpath entry is
considered a matching entry if it meets one of the following criteria:

18.1. Overview

602 Jakarta Enterprise Beans, Core Features DRAFT

It is an ejb-jar according to the standard module-type identification rules defined by the Java EE
platform specification

It is a directory containing a META-INF/ejb-jar.xml file or at least one .class file with an enterprise bean
component-defining annotation

Each such matching entry is considered an EJB module within the same application.126

If an ejb-jar.xml file is present the module-name element defines the module name. Otherwise, for ejb-
jar files, the module name is the unqualified file name excluding the “ .jar ” extension, and for
directories the module name is the unqualified name of the directory (the last name in the pathname’s
name sequence). The embeddable container is not required to support more than one matching entry
with the same module name.

An alternative form of the createEJBContainer method provides a set of properties for customizing the
embeddable container creation:

javax.ejb.embeddable.EJBContainer createEJBContainer(Map<?, ?> properties)

This specification reserves the prefix “javax.ejb.” for standard property names. It is expected that
embeddable Container Providers will define their own properties as well.

For example, given the following java command and assuming that foo.jar and bar.jar are both valid
ejb-jar files,

java -classpath foo.jar:bar.jar:vendor-rt.jar:client.jar

com.acme.Client

the following will result in only the bar.jar module being initialized by the container:

Properties props = new Properties();

props.setProperty(EJBContainer.MODULES, "bar");

EJBContainer ec = EJBContainer.createEJBContainer(props);

An embeddable Container Provider is permitted to require that a preprocessing or tooling step be
performed on the application modules prior to JVM initialization.

After identifying the set of matching modules, the embeddable container commences application
initialization. Any singleton session beans configured for eager initialization will be initialized at this
point. When the createEJBContainer method returns successfully, the client can access the client view
of any enterprise bean in the application.

Enterprise beans running within the embeddable container are loaded using the context class loader
active on the thread at the time that the createEJBContainer method is called.

18.2. Bootstrapping API

DRAFT Jakarta Enterprise Beans, Core Features 603

#a10346

18.2.2. Standard Initialization Properties

The following embeddable container initialization properties are required to be supported by all
embeddable Container Providers.

18.2.2.1. javax.ejb.embeddable.provider

This property holds a String value that specifies the fully-qualified name of an embeddable container
provider class corresponding to the embeddable container implementation that should be used for this
application.

The property name is defined as EJBContainer.PROVIDER.

18.2.2.2. javax.ejb.embeddable.modules

This property is used to explicitly specify the module(s) to be initialized. It can refer to modules that
are included in the JVM classpath or to modules outside the JVM classpath.

If the target modules are part of the classpath, this property holds either a single module name (of type
java.lang.String) or an array of module names (of type java.lang.String[]). For each specified module
name, the container searches the class path for the first eligible ejb-jar file or directory whose
corresponding module name matches the given name. All specified modules must match an entry in
the classpath.

If the target modules are outside of the classpath, this property holds either a single java.io.File object
or an array of java.io.File objects, where each file object refers to either an ejb-jar file or an exploded
ejb-jar directory in the format listed above. Note that in this case it is the responsibility of the caller to
ensure that the context class loader has visibility to the classes required by these modules.

The property name is defined as EJBContainer.MODULES.

18.2.2.3. javax.ejb.embeddable.appName

This property specifies an application name for the EJB modules executing within the embeddable
container. If specified, the property value applies to the <app-name> portion of the portable global
JNDI name syntax. It is recommended that this property be set whenever an embeddable container is
executed with more than one EJB module.

The property name is defined as EJBContainer.APP_NAME.

18.2.3. Looking Up Session Bean References

The EJBContainer instance can be used to retrieve a javax.naming.Context object that supports the
lookup of client references to session beans running within the embeddable container. Session bean
references are identified using the portable "java:global/" JNDI name syntax defined in section See
Access in the Global JNDI Namespace.

18.2. Bootstrapping API

604 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a800
Ejb.html#a800

A client retrieves a Context object using the following EJBContainer method:

javax.naming.Context EJBContainer.getContext();

The following example illustrates the lookup of a FooLocal local business interface of a session bean
with ejb-name FooBean in the ejb-jar foo.jar:

Context ctx = ec.getContext();

FooLocal foo = (FooLocal) ctx.lookup("java:global/foo/FooBean");

18.2.4. Embeddable Container Shutdown

To shut down an embeddable container instance and its associated application, the client may call the
EJBContainer.close() method or, because the EJBContainer class implements the
java.lang.AutoCloseable interface, the client may close the container implicitly by using the try-with-
resources statement when aquiring the EJBContainer instance.

The client is not required to call close() or use the try-with-resources statement, but their use is
recommended for optimal resource cleanup, especially in the case when the application lifetime is
shorter than the lifetime of the enclosing JVM.

During the implicit or explicit processing of the close() method, the embeddable container:

cancels all non-persistent timers

cancels all pending asynchronous invocations

calls the PreDestroy methods of any singleton session bean instances in the application

An embeddable Container Provider is only required to support one active embeddable EJB container at
a time per JVM. Attempts to concurrently create multiple active embeddable EJB containers may result
in a container initialization error.

18.3. Embeddable Container Provider’s Responsibilities
This section describes the responsibilities of the embeddable Container Provider to support an
embeddable container environment.

18.3.1. Runtime Environment

Except for the packaging requirements, the embeddable Container Provider is required to support the
EJB Lite group of the EJB API within an embeddable container environment. See section See
EJBContainer for the packaging requirements. An embeddable Container Provider may additionally
support other EJB API groups within an embeddable container environment. See See EJB Lite and
Other EJB API Groups for more details.

18.3. Embeddable Container Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 605

Ejb.html#a9743
Ejb.html#a9743
Ejb.html#a9428
Ejb.html#a9428

18.3.2. Naming Lookups

The embeddable Container Provider is required to support naming lookups of the local and no-
interface views of any session beans defined to run within the embeddable container. Naming entries
for these enterprise beans must conform to the portable global JNDI name requirements in See Access
in the Global JNDI Namespace.

18.3.3. Embeddable Container Bootstrapping

An embeddable Container Provider implementation must act as a service provider by supplying a
service provider configuration file as described in the JAR File Specification See JAR File Specification.

The service provider configuration file serves to export the embeddable container implementation
class to the EJBContainer bootstrap class, positioning itself as a candidate for instantiation.

The embeddable Container Provider supplies the provider configuration file by creating a text file
named javax.ejb.spi.EJBContainerProvider and placing it in the META-INF/services directory of one of
its JAR files. The contents of the file must be the name of the embeddable Container Provider
implementation class of the javax.ejb.spi.EJBContainerProvider interface.

Example:

An embeddable Container Provider creates a JAR called acme.jar that contains its embeddable
container implementation. The JAR includes the provider configuration file:

acme.jar

META-INF/services/javax.ejb.spi.EJBContainerProvider

com/acme/EJBContainerProvider.class

...

The contents of the META-INF/services/javax.ejb.spi.EJBContainerProvider file is nothing more than the
name of the implementation class: com.acme.EJBContainerProvider.

The EJBContainer bootstrap class will locate all of the embeddable Container Providers by their
provider configuration files and call the EJBContainerProvider.createEJBContainer(Map<?, ?>) method
on them in turn until an appropriate backing provider returns an EJBContainer instance. A provider
may deem itself as appropriate for the embeddable application if any of the following are true:

The javax.ejb.embeddable.provider property was included in the Map passed to the
createEJBContainer method and the value of the property is the provider’s implementation class.

18.3. Embeddable Container Provider’s Responsibilities

606 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a800
Ejb.html#a800
Ejb.html#a9882

No javax.ejb.embeddable.provider property was specified.

If a provider does not qualify as the provider for the embeddable application, it must return null when
createEJBContainer is invoked on it.

18.3.4. Concrete javax.ejb.embeddable.EJBContainer Implementation Class

The embeddable Container Provider is required to provide a subclass of the
javax.ejb.embeddable.EJBContainer class. The following are the requirements for this class:

The class must be defined as public and must not be abstract

The class must extend either directly or indirectly the class javax.ejb.embeddable.EJBContainer

The class must provide implementations of the following javax.ejb.embeddable.EJBContainer methods:

getContext()

close()

18.3. Embeddable Container Provider’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 607

Chapter 19. Responsibilities of EJB Roles
This chapter provides the summary of the responsibilities of each EJB Role.

19.1. Bean Provider’s Responsibilities
This section highlights the requirements for the Bean Provider. Meeting these requirements is
necessary to ensure that the enterprise beans developed by the Bean Provider can be deployed in all
compliant EJB containers.

19.1.1. API Requirements

The enterprise beans must meet all the API requirements defined in the individual chapters of this
document.

19.1.2. Packaging Requirements

The Bean Provider is responsible for packaging the enterprise beans in an ejb-jar file or .war file in the
format described in Chapter See Packaging.

The deployment descriptor, if present, must conform to the requirements of See Deployment
Descriptor.

19.2. Application Assembler’s Responsibilities
The requirements for the Application Assembler are in defined in See Deployment Descriptor and See
Packaging.

19.3. EJB Container Provider’s Responsibilities
The EJB Container Provider is responsible for providing the deployment tools used by the Deployer to
deploy enterprise beans packaged in the ejb-jar file. The requirements for the deployment tools are
defined in the individual chapters of this document.

The EJB Container Provider is responsible for implementing its part of the EJB contracts and its part of
the contracts described in Java Persistence API specification See Java™ Persistence API, and for
providing all the runtime services described in the individual chapters of this document.

19.4. Deployer’s Responsibilities
The Deployer uses the deployment tools provided by the EJB Container Provider to deploy ejb-jar files
or .war files produced by the Bean Providers and Application Assemblers.

The individual chapters of this document describe the responsibilities of the Deployer in more detail.

19.1. Bean Provider’s Responsibilities

608 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9294
Ejb.html#a5804
Ejb.html#a5804
Ejb.html#a5804
Ejb.html#a9294
Ejb.html#a9294
Ejb.html#a9851

19.5. System Administrator’s Responsibilities
The System Administrator is responsible for configuring the EJB container and server, setting up
security management, integrating resource managers with the EJB container, and runtime monitoring
of deployed enterprise beans applications.

The individual chapters of this document describe the responsibilities of the System Administrator in
more detail.

19.6. Client Programmer’s Responsibilities
The EJB client programmer writes applications that access enterprise beans via their business
interfaces, via their no-interface view, via their web service client view, or via messages, or view their
home and component interfaces.

19.5. System Administrator’s Responsibilities

DRAFT Jakarta Enterprise Beans, Core Features 609

Chapter 20. Related Documents
Enterprise JavaBeans™, version 3.2. (this specification) http://jcp.org/en/jsr/detail?id=3 45.

Java™ Persistence API, version 2.1. http://jcp.org/en/jsr/detail?id=338 .

Enterprise JavaBeans™, version 2. (EJB 2.1). http://www.oracle.com/technetwork/java/javaee/ejb/
index.html.

JavaBeans™. http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138795.html.

Java™ Naming and Directory Interface 1.2 Specification (JNDI). http://docs.oracle.com/javase/7/docs/
technotes/guides/jndi/index.html.

Java Remote Method Invocation (RMI). http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/.

Java™ Security. http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html.

Java™ Transaction API, version 1.2 (JTA). http://jcp.org/en/jsr/detail?id=907.

Java™ Transaction Service, version 1.0 (JTS). http://www.oracle.com/technetwork/java/javaee/jts-
spec095-1508547.pdf.

IDL To Java™ Language Mapping Specification. http://www.omg.org/cgi-bin/doc?ptc/2000-01-08.

Transaction Service Specification (OTS). http://www.omg.org/cgi-bin/doc?ptc/2001-11-03.

Java™ Platform, Enterprise Edition Specification Version 7 (Java EE). http://jcp.org/en/jsr/detail?id=342 .

Java™ Message Service, version 2.0 (JMS). http://jcp.org/en/jsr/detail?id=343.

Java EE™ Connector Architecture, version 1.7 (Connector). http://jcp.org/en/jsr/detail?id=322 .

Enterprise JavaBeans™ to CORBA Mapping
v1.1.http://www.oracle.com/technetwork/java/javaee/ejb/index.html.

CORBA 2.3.1 Specification. http://www.omg.org/cgi-bin/doc?formal/99-10-07.

CORBA Naming Service. http://www.omg.org/spec/NAM/.

Interoperable Name Service FTF document. http://www.omg.org/cgi-bin/doc?ptc/00-08-07.

RFC 2246: The TLS Protocol. ftp://ftp.isi.edu/in-notes/rfc2246.txt.

RFC 2712: Addition of Kerberos Cipher Suites to Transport Layer Security. ftp://ftp.isi.edu/in-notes/
rfc2712.txt.

The SSL Protocol Version 3.0. http://tools.ietf.org/html/rfc6101.

Chapter 20. Related Documents

610 Jakarta Enterprise Beans, Core Features DRAFT

http://jcp.org/en/jsr/detail?id=3
http://jcp.org/en/jsr/detail?id=338
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-138795.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jndi/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jndi/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/rmi/
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://jcp.org/en/jsr/detail?id=907
http://www.oracle.com/technetwork/java/javaee/jts-spec095-1508547.pdf
http://www.oracle.com/technetwork/java/javaee/jts-spec095-1508547.pdf
http://www.omg.org/cgi-bin/doc?ptc/2000-01-08
http://www.omg.org/cgi-bin/doc?ptc/2001-11-03
http://jcp.org/en/jsr/detail?id=342
http://jcp.org/en/jsr/detail?id=343
http://jcp.org/en/jsr/detail?id=322
http://www.omg.org/cgi-bin/doc?formal/99-10-07
http://www.omg.org/spec/NAM/
http://www.omg.org/cgi-bin/doc?ptc/00-08-07
ftp://ftp.isi.edu/in-notes/rfc2246.txt
ftp://ftp.isi.edu/in-notes/rfc2712.txt
ftp://ftp.isi.edu/in-notes/rfc2712.txt
http://tools.ietf.org/html/rfc6101

Common Secure Interoperability Version 2 Final Available Specification. http://www.omg.org/cgi-
bin/doc?ptc/2001-06-17.

Database Language SQL. ANSI X3.135-1992 or ISO/IEC 9075:1992.

Java™ API for XML-based RPC, version 1.1 (JAX-RPC). http://jcp.org/en/jsr/detail?id=101.

Web Services Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl.

W3C: SOAP 1.2. http://www.w3.org/TR/SOAP/.

The Java Virtual Machine Specification.

JDBC™ 4.1 API (JDBC specification). http://jcp.org/en/jsr/detail?id=221.

Web Services Metadata for the Java Platform, version 2.1. http://jcp.org/en/jsr/detail?id=181.

Web Services for Java EE, version 1.3. http://jcp.org/en/jsr/detail?id=109.

 _Java™ API for XML-based Web Service,
version 2.2 (JAX-WS). http://jcp.org/en/jsr/detail?id=224._

JAR File Specification, http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html.

Java™ Platform, Standard Edition, v7 API Specification (Java SE). http://docs.oracle.com/javase/7/docs/
api/index.html.

Enterprise JavaBeans™, version 3.0. (EJB 3.0). http://www.oracle.com/technetwork/java/javaee/ejb/
index.html. __

List of zoneinfo time zones: http://en.wikipedia.org/wiki/List_of_tz_zones.

Managed Beans, version 1.0 (Managed Beans). http://jcp.org/en/jsr/detail?id=316.

Interceptors, version 1.2. http://jcp.org/en/jsr/detail?id=318.

Contexts and Dependency Injection for the Java EE Platform 1.1 (CDI specification) http://jcp.org/en/jsr/
detail?id=346.

The Java API for RESTful Web Services, version 2.0 (JAX-RS) http://jcp.org/en/jsr/detail?id=339.

EJB 3.2 Optional Features http://jcp.org/en/jsr/detail?id=345 .

Enterprise JavaBeans™, version 3.1. (EJB 3.1). http://jcp.org/en/jsr/detail?id=318.

Chapter 20. Related Documents

DRAFT Jakarta Enterprise Beans, Core Features 611

http://www.omg.org/cgi-bin/doc?ptc/2001-06-17
http://www.omg.org/cgi-bin/doc?ptc/2001-06-17
http://www.omg.org/cgi-bin/doc?ptc/2001-06-17
http://jcp.org/en/jsr/detail?id=101
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/SOAP/
http://jcp.org/en/jsr/detail?id=221
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=109
http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://docs.oracle.com/javase/7/docs/api/index.html
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://en.wikipedia.org/wiki/List_of_tz_zones
http://jcp.org/en/jsr/detail?id=316
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=346
http://jcp.org/en/jsr/detail?id=346
http://jcp.org/en/jsr/detail?id=339
http://jcp.org/en/jsr/detail?id=345
http://jcp.org/en/jsr/detail?id=318

Appendix A: Revision History
This appendix lists the significant changes that have been made to this document during the
development of the EJB 3.2 Specification.

A.1. Early Draft 1
See Introduction

Update in preparation for EJB 3.2.

Minor editorial changes.

See Overview

Removed Persistence Provider role, as Java Persistence is now a separate specification

Rewrote Pruning section to reflect the EJB features which are being made optional in the EJB 3.2
release. Added references to the new EJB Optional Features document See EJB 3.2 Optional Features.

Minor editorial changes.

See Client View of a Session Bean

Reorganized section See Overview.

Clarified terminology used in the document when reference to client view interfaces in section See
Local, Remote, and Web Service Client Views.

Reorganization of sections See Remote Clients, See Local Clients, See Web Service Clients.

Relocated Object Identity discussion into section See Object Identity.

Moved section 3.5.2 to the EJB Optional Features document See EJB 3.2 Optional and removed
references to JAX-RPC API and entity beans.

Minor editorial changes.

See Session Bean Component Contract

Added caveat about javax.mail.Session object and stateful session bean passivation to section See
Instance Passivation and Conversational State.

Flagged open issues in sections See The SessionContext Interface, See The SessionBean Interface, See
The Session Synchronization Notifications for Stateful Session Beans, See Stateful Session Bean
Removal, See java:module, See Operations Allowed in the Methods of a Stateful Session Bean Class (two
issues), See Stateless Session Beans, See Operations Allowed in the Methods of a Stateless Session Bean

A.1. Early Draft 1

612 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a1
Ejb.html#a66
Ejb.html#a9890
Ejb.html#a204
Ejb.html#a207
Ejb.html#a224
Ejb.html#a224
Ejb.html#a235
Ejb.html#a242
Ejb.html#a271
Ejb.html#a564
Ejb.html#a9890
Ejb.html#a608
Ejb.html#a639
Ejb.html#a639
Ejb.html#a682
Ejb.html#a722
Ejb.html#a736
Ejb.html#a736
Ejb.html#a767
Ejb.html#a767
Ejb.html#a816
Ejb.html#a947
Ejb.html#a1065
Ejb.html#a1085

Class,

Removed references to JAX-RPC API and entity beans. Moved most of the section 4.9.13 to the EJB
Optional Features document See EJB 3.2 Optional

Minor editorial changes and reorganization

See Message-Driven Bean Component Contract

Minor editorial changes.

Flagged open issue in section See The MessageDrivenContext Interface.

See Persistence

Noticed optionality of support for EJB 2.1 and 1.1 entity beans and EJB QL 1.1 and added references to
the corresponding chapters of the EJB Optional Features document See EJB 3.2 Optional Features.

See Interceptors

Minor editorial changes only.

See Support for Transactions

Moved text related to the entity beans to the EJB Optional Features document See EJB 3.2 Optional
Features http://jcp.org/en/jsr/detail?id=345.

Flagged issues in sections See Enterprise Beans Using Bean-Managed Transaction Demarcation, See
Specification of the Transaction Attributes for a Bean’s Methods, See Use of the container-transaction
element

Miscellaneous minor editorial changes.

See Exception Handling

Moved sections 14.2.2.1and 14.3.8 to the EJB Optional Features document See EJB 3.2, removed
references to the JAX-RPC web service endpoint interface and to the entity beans.

Minor editorial changes.

See Support for Distributed Interoperability

Removed references to the JAX-RPC web service endpoint interface and to the entity beans.

Editorial changes.

See Enterprise Bean Environment

Mostly editorial changes

A.1. Early Draft 1

DRAFT Jakarta Enterprise Beans, Core Features 613

Ejb.html#a1085
Ejb.html#a9890
Ejb.html#a1702
Ejb.html#a1751
Ejb.html#a2000
Ejb.html#a9890
Ejb.html#a2004
Ejb.html#a2172
Ejb.html#a9890
Ejb.html#a9890
Ejb.html#a9890
Ejb.html#a9890
Ejb.html#a2250
Ejb.html#a2538
Ejb.html#a2538
Ejb.html#a2624
Ejb.html#a2624
Ejb.html#a2940
Ejb.html#a9890
Ejb.html#a3308
Ejb.html#a3613

Corrected missing references to no-interface view

Minor expansion to description in section See Bean Provider’s Responsibilities

Removed references to the entity beans and replaced entity bean type with a session bean in examples
in sections See Declaration of EJB References in Deployment Descriptor and See Application
Assembler’s Responsibilities.

Cleaned up section See Application Assembler’s Responsibilities in attempt to clarify the use and
syntax of the ejb-link element. These changes require further review.

Tried to cleanup section See Deployer’s Responsibility. This is flagged for further review.

See Security Management

Mostly editorial changes

Removed references to the entity beans

Corrected missing reference to no-interface view in section See Responsibilities of the Bean Provider
and/or Application Assembler and to business interfaces in section See Audit Trail

See Timer Service

Added clarifications to section See Bean Provider’s View of the Timer Service

Removed references to the EJB 2.x entity beans and moved section 18.4.5 to the EJB Optional Features
document See EJB 3.2 Optional Features

Flagged a number of open issues and tried to clarify. These require review/discussion.

See Deployment Descriptor

Added a note that entity beans elements are described in the EJB Optional Features document See EJB
3.2 Optional Features. Moved description of the persistence related elements to the new document.
Removed references to the entity beans where possible.

Open issues for difficult to parse paragraphs in sections See Bean Provider’s Responsibilities (for no-
interface view) and See Application Assembler’s Responsibility (first paragraph).

Miscellaneous editorial changes.

See Packaging

Rewrote to better clarify intended semantics

Removed references to the entity beans and moved sections 20.4.5 and 20.4.6 to the EJB Optional
Features document See EJB 3.2 Optional Features

A.1. Early Draft 1

614 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a3915
Ejb.html#a3998
Ejb.html#a4057
Ejb.html#a4057
Ejb.html#a4057
Ejb.html#a4133
Ejb.html#a4945
Ejb.html#a5121
Ejb.html#a5121
Ejb.html#a5442
Ejb.html#a5456
Ejb.html#a5465
Ejb.html#a9890
Ejb.html#a5804
Ejb.html#a9890
Ejb.html#a9890
Ejb.html#a5815
Ejb.html#a5865
Ejb.html#a9294
Ejb.html#a9890

Flagged a number of open issues. See section See Enterprise Beans Packaged in a .war file, See
Visibility of the Local Client View, See The Client View and the ejb-client JAR File, See Requirements for
Clients.

See Runtime Environment

Section See EJB Interfaces and Annotations Requirements. Reinstated requirements around JPA
contracts.

Miscellaneous editorial changes.

See Embeddable Usage

Miscellaneous editorial changes.

Flagged a couple of open issues related to requirements on the container in section See Embeddable
Container Bootstrapping.

See Responsibilities of EJB Roles

Removed reference to Persistence Provider role.

Original Chapter 7, “Client View of an EJB 2.1 Entity Bean”

Moved to the EJB Optional Features document See EJB 3.2 Optional Features

Original Chapter 8, “EJB 2.1 Entity Bean Component Contract for Container-Managed Persistence”

Moved to the EJB Optional Features document See EJB 3.2 Optional Features

Original Chapter 9, “EJB QL: EJB 2.1 Query Language for Container-Managed Persistence Query
Methods”

Moved to the EJB Optional Features document See EJB 3.2 Optional Features

Original Chapter 10, “EJB 2.1 Entity Bean Component Contract for Bean-Managed Persistence”

Moved to the EJB Optional Features document See EJB 3.2 Optional Features

Original Chapter 11, “EJB 1.1 Entity Bean Component Contract for Container-Managed Persistence”

Moved to the EJB Optional Features document See EJB 3.2 Optional Features

A.2. Early Draft 2
See Introduction

Added expert group memebers of JSR-345

A.2. Early Draft 2

DRAFT Jakarta Enterprise Beans, Core Features 615

Ejb.html#a9314
Ejb.html#a9324
Ejb.html#a9324
Ejb.html#a9390
Ejb.html#a9397
Ejb.html#a9397
Ejb.html#a9423
Ejb.html#a9622
Ejb.html#a9735
Ejb.html#a9803
Ejb.html#a9803
Ejb.html#a9826
Ejb.html#a9890
Ejb.html#a9890
Ejb.html#a9890
Ejb.html#a9890
Ejb.html#a9890
Ejb.html#a1

Updated section See What is New in This Release

Fixed typo

See Overview

Clarified Application Assembler role

See Session Bean Component Contract

Minor editorial changes

Clarified getContextData method

Resolved that PostConstruct callback method can be exposed as a business method

Clarified when wasCancelCalled method can be called

Clarify usage of getBusinessObject method in sections See The SessionContext Interface

Replaced “common bean state” with “bean instance variables”

Clarified that if a singleton session bean fails to initialize, attempted invocations on the singleton
session bean result in an the javax.ejb.NoSuchEJBException exception

Clarified that at most one afterBegin, beforeCompletion, afterCompletion method can be used for a
bean

Clarified that if there are multiple remove methods, their retainIfException values can differ

Removed clarification request from section See The SessionBean Interface, last paragraph as the text
seems clear to the EG

New: Added support for the lifecycle callback interceptor methods of stateful session beans to execute
in a transaction context determined by the bean’s transaction management type and any applicable
transaction attribute

New: Added getRollbackOnly and setRollbackOnly to permitted operations in lifecycle callback
interceptor methods with container-managed transaction demarcation in See Operations Allowed in
the Methods of a Stateful Session Bean

Renamed section See Stateful Session Beans to be consistent with those for stateless and singleton
session beans

See Message-Driven Bean Component Contract

Clarified getContextData method

Minor editorial changes

A.2. Early Draft 2

616 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a6
Ejb.html#a66
Ejb.html#a608
Ejb.html#a682
Ejb.html#a722
Ejb.html#a953
Ejb.html#a953
Ejb.html#a921
Ejb.html#a1702

See Interceptors

Clarified getContextData method

Minor editorial changes

New: Added support for the lifecycle callback interceptor methods of stateful session beans to execute
in a transaction context determined by the bean’s transaction management type and any applicable
transaction attribute

See Support for Transactions

Minor editorial changes

Clarified that the bean-managed transaction must be completed before the last AroundInvoke
interceptor method completes

Confirmed that no further clarification is necessary for the singleton session bean PostConstruct and
PreDestroy bullet item

Added singleton PostConstruct and PreDestroy methods to the list of methods which can use container-
transaction element to define the transaction attributes

New: Added support for the lifecycle callback interceptor methods of stateful session beans to execute
in a transaction context determined by the bean’s transaction management type and any applicable
transaction attribute

See Exception Handling

Clarified class hierarchy rules for an application exception

Clarified how application exception is defined

New: Added support for the lifecycle callback interceptor methods of stateful session beans to execute
in a transaction context determined by the bean’s transaction management type and any applicable
transaction attribute

See Enterprise Bean Environment

Minor editorial changes

No further clarifications needed in the module name description

No further clarifications needed in section See Deployer’s Responsibility Deployer role

Fixed the list of valid Java types for environment entry values to match Java EE Specification

See Timer Service

A.2. Early Draft 2

DRAFT Jakarta Enterprise Beans, Core Features 617

Ejb.html#a2004
Ejb.html#a2172
Ejb.html#a2940
Ejb.html#a3613
Ejb.html#a4133
Ejb.html#a5456

Minor editorial changes

Clarified EJB timers creation and expiration in regards to the number of JVM instances

Clarified the case when the dayOfMonth attribute has a non-wildcard value and the dayOfWeek
attribute has a non-wildcard value

Added a note that the “5th” is the highest ordinal number allowed as the value for the dayOfMonth

Clarified that the getTimers method returns all active timers associated with the bean

Clarified that the timeout callback method for the programmatically-created timers can also be
associated with the same method as automatically-created timers

Clarified use of method-param of the timeout-method element for matching the timeout methods in
the bean class

Removed reference to automatically created timers from the rule about invoking a no-arg timeout
callback method

Clarified bean class rules for programmatically created timers

See Deployment Descriptor

Clarified the text on how the Application Assembler assembles enterprise beans into deployment units.

Confirmed that the new text about Enterprise bean’s no-interface view is correct

Minor editorial changes

See Packaging

Added a note that a .war file may contain enterprise bean classes in a combination of classes within
the WEB-INF/classes directory and one or more jar files within the WEB-INF/lib directory

Confirmed that text describing visibility of the local client view and client view is correct

Confirmed that the requirements for the jar file that contains the client are correct

Minor editorial changes

See Runtime Environment

Minor editorial changes

Clarified the lists under JNDI requirements on how they apply to the Full Java EE Platform and the Web
Profile and the embeddable EJB container

New: Added 2.x Local Home/Component to See EJB API Groups

A.2. Early Draft 2

618 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a5804
Ejb.html#a9294
Ejb.html#a9423
Ejb.html#a9442

New: Added asynchronous session bean invocations and non-persistent EJB Timer Service support to
EJB Lite and See EJB API Groups

New: Removed restriction to obtain the current class loader; changed ‘must not’ to ‘should exercise
caution’ when using the Java I/O package

New: Changed the statement in section See Stateful Session Beans about transaction context of
invocation of the PostConstruct lifecycle callbacks and Init method to be determined by the bean’s
transaction management type and any applicable transaction attribute.

See Embeddable Usage

Clarified that A Container Provider implementation must act as a service provider

Appendix B, “Open Issues and To-Do Items” (removed)

Moved all non-resolved open issues to JIRA (http://java.net/jira/browse/EJB_SPEC)

A.3. Public Review Draft 1 & 2
See Introduction

Updated the rule: the lifecycle callback interceptor methods of stateful session beans can be executed
in a transaction context determined by the lifecycle callback method’s transaction attribute

Updated "What is New in This Release"

See Overview

Minor editorial changes

See Client View of a Session Bean

Excluded methods defined on the java.lang.Object class from the no-interface view

See Session Bean Component Contract

Excluded methods defined on the java.lang.Object class from the no-interface view

Removed section on javax.ejb.embeddable.appName as it is a duplicate of the section in See
Embeddable Usage

Specified javax.xml.ws.handler.MessageContext instead of a non-deterministic MessageContex

Updated the rule: the lifecycle callback interceptor methods of stateful session beans can be executed
in a transaction context determined by the lifecycle callback method’s transaction attribute

Updated the rule: only transaction attributes REQUIRES_NEW or NOT_SUPPORTED (RequiresNew or

A.3. Public Review Draft 1 & 2

DRAFT Jakarta Enterprise Beans, Core Features 619

Ejb.html#a9442
Ejb.html#a9726
Ejb.html#a9735
http://java.net/jira/browse/EJB_SPEC
Ejb.html#a1
Ejb.html#a66
Ejb.html#a204
Ejb.html#a608
Ejb.html#a9735
Ejb.html#a9735

NotSupported if the deployment descriptor is used) are permitted for lifecycle callback interceptor
methods of stateful session beans

Restored the rule: invocation of the Init method of stateful session beans occurs in an unspecified
transaction context

New: Added support for not passivation capable stateful session beans

New: Specified the relaxed default rules for designating implemented interfaces for a session bean as
local or as remote business interfaces

See Message-Driven Bean Component Contract

Minor editorial changes

See Support for Transactions

Editorial changes in examples

Specified transaction completion rules for BMT beans when AroundInvoke interceptor methods are
applied to a business method, or AroundTimeout interceptor methods are applied to a timeout callback
method

Updated the rule: the lifecycle callback interceptor methods of stateful session beans to be executed in
a transaction context determined by the lifecycle callback method’s transaction attribute

Updated the rule: only transaction attributes REQUIRES_NEW or NOT_SUPPORTED (RequiresNew or
NotSupported if the deployment descriptor is used) are permitted for lifecycle callback interceptor
methods of stateful session beans

Clarified use of the container-transaction element. Added singleton PostConstruct and PreDestroy
methods and listed limitations of using stateful session bean PostConstruct, PreDestroy, PrePassivate or
PostActivate methods as the methods which can use container-transaction element to define the
transaction attributes

See Enterprise Bean Environment

Added details about elements of the EJB annotation

See Timer Service

Added getAllTimers method

See Deployment Descriptor

Minor editorial changes

See Packaging

A.3. Public Review Draft 1 & 2

620 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a1702
Ejb.html#a2172
Ejb.html#a3613
Ejb.html#a5456
Ejb.html#a5804
Ejb.html#a9294

Minor editorial changes

See Runtime Environment

Removed embeddable API from the required contents of EJB Lite and Full EJB API

Removed reference to the embeddable EJB container from the list of objects that EJB container must
make available within an implementation of the Full Java EE Platform

Updated the rule: invocation of the PostConstruct and PreDestroy lifecycle callbacks methods of
stateful session beans occurs in a transaction context determined by the method’s transaction
attribute, if any.

Restored the rule: invocation of the Init method of stateful session beans with container-managed
transaction occurs in an unspecified transaction context

See Compatibility and Migration

Created a separate chapter out of subsection

See Embeddable Usage

Clarified that the embeddable EJB container is to be used only within a Java SE environment

Clarified that Container Provider refers to embeddable Container Provider

Fixed typo in the EJBContainer package

See Revision History

Rearranged history with the latest changes being at the end

A.4. Public Review Draft 3
See Introduction

Updated the rule: only local asynchronous session bean invocations are supported in EJB Lite

See Session Bean Component Contract

Specified that the SessionContext object in a the singleton session bean is thread-safe

See Message-Driven Bean Component Contract

Added descriptions of the new standard activation properties for JMS message-driven beans

Rearranged subsections on JMS message-driven beans under a single section

Added requirements for the container provider to publish the name which uniquely identifies the

A.4. Public Review Draft 3

DRAFT Jakarta Enterprise Beans, Core Features 621

Ejb.html#a9423
Ejb.html#a9694
Ejb.html#a9735
Ejb.html#a9892
Ejb.html#a1
Ejb.html#a608
Ejb.html#a1702

deployed MDB in the JNDI naming context under java:comp/uniqueMDBName

Noted that the MessageDriven annotation is a component-defining annotation

See Enterprise Bean Environment

Specified that the SessionContext object in a the singleton session bean is thread-safe

See Timer Service

Clarified EJB timers distribution and failover rules apply only to persistent timers

Clarified that non-persistent timers returned by getTimers and getAllTimers methods are from the
same JVM as the caller

See Deployment Descriptor

Explicitly listed the component-defining annotations

See Runtime Environment

Updated the rule: only local asynchronous session bean invocations are supported in EJB Lite

Clarified that “Local” view in EJB Lite means “Local business interface” view

Synchronized permissions in the Table See Java 2 Platform Security Policy for a Standard EJB
Container with the permissions listed for the EJB Components in the Java EE Platform Specification See
Java™ Platform Table EE.6-2.

See Compatibility and Migration

Fixed typos and section numbering (left over after moving it to its own chapter)

Noted that only 3.0 and 3.1 deployment descriptors are required to be supported in EJB Lite for prior
versions of the applications

See Embeddable Usage

Noted that during the processing of the close() method, the embeddable container cancels all pending
asynchronous invocations and non-persistent timers

See Related Documents

Updated to the latest versions of the related documents

See Public Review Draft 1 & 2

Marked that the changes reflect combined changes in version 1 and 2

A.4. Public Review Draft 3

622 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a3613
Ejb.html#a5456
Ejb.html#a5804
Ejb.html#a9423
Ejb.html#a9591
Ejb.html#a9591
Ejb.html#a9861
Ejb.html#a9861
Ejb.html#a9694
Ejb.html#a9735
Ejb.html#a9849
Ejb.html#a10047

A.5. Public Review Draft 4
See Introduction

Updated "What is New in This Release"

Removed Interceptors specification from the section See Organization of the Specification Documents

Minor editorial changes

See Overview

Added section on relationship to the CDI Specification

Minor editorial changes

See Client View of a Session Bean

Minor editorial changes

See Session Bean Component Contract

Added a note on failover support being undefined for not passivation capable stateful session beans

Noted the a bean class may declare a constructor using Inject annotation in addition to a no-arg
constructor, if it is a CDI-enabled bean

Noted that a container can invoke the PreDestroy method on the instance without a client call to
remove the session object when the context to which the CDI-enabled bean instance belongs to is
destroyed

Reworded section See Session Bean’s Business Interface

Added a footnote to “Operation Allowed” tables on lifecycle callback method treated like a business
method if called through a business interface or a no-interface view

Replace restriction on asynchronous business methods exposed through the component and web
service client views, with the statement that support is not required.

Added a note that concurrency management type CONTAINER may be specified for stateful session
beans, but doing so has no impact on the semantics of concurrency management for such beans.

Minor editorial changes

See Message-Driven Bean Component Contract

Removed requirements for the container provider to publish the name which uniquely identifies the
deployed MDB in the JNDI naming context under java:comp/uniqueMDBName

A.5. Public Review Draft 4

DRAFT Jakarta Enterprise Beans, Core Features 623

Ejb.html#a1
Ejb.html#a56
Ejb.html#a66
Ejb.html#a204
Ejb.html#a608
Ejb.html#a1518
Ejb.html#a1702

Minor editorial changes

See Interceptors

Described common rules for exception in section See Exception Handling

Minor editorial changes

See Support for Transactions

Split section “8.6.2 Container-Managed Transaction Demarcation for Session Beans” into See Container-
Managed Transaction Demarcation for Session Beans and See Container-Managed Transaction
Demarcation for Business Methods to allow easier references from the Optional document

Split section “8.6.3 Container-Managed Transaction Demarcation for Message-Driven Beans” into See
Container-Managed Transaction Demarcation for Message-Driven Beans and See Container-Managed
Transaction Demarcation for Message Listener Methods to follow layout of the corresponding sections
for session beans

Added a footnote that component contract and client view of entity beans are described in the EJB
Optional Features document See EJB 3.2

See Exception Handling

Minor editorial changes

See Support for Distributed Interoperability

Restored references to entity beans where separating the rules added an unnecessary complexity.
Added footnotes that component contract and client view of entity beans are described in the EJB
Optional Features document.

See Enterprise Bean Environment

Restored references to entity beans as separating the rules added an unnecessary complexity. Added
footnotes that component contract and client view of entity beans are described in the EJB Optional
Features document.

See Security Management

Restored references to entity beans as separating the rules added an unnecessary complexity. Added
footnotes that component contract and client view of entity beans are described in the EJB Optional
Features document.

See Timer Service

Updated the rule: Removed restriction that timers returned by getAllTimers method can be cancelled
only by the owning bean.

A.5. Public Review Draft 4

624 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a2004
Ejb.html#a2031
Ejb.html#a2172
Ejb.html#a2748
Ejb.html#a2748
Ejb.html#a2755
Ejb.html#a2755
Ejb.html#a2854
Ejb.html#a2854
Ejb.html#a2858
Ejb.html#a2858
Ejb.html#a9890
Ejb.html#a2940
Ejb.html#a3308
Ejb.html#a3613
Ejb.html#a4945
Ejb.html#a5456

Removed restrictions on javax.ejb.Timer and javax.ejb.TimerHandle references to be used only inside
a bean.

See Deployment Descriptor

Updated XML Schema definition to the latest version

Added a note that concurrency-management-type Container may be specified for stateful session
beans, but doing so has no impact on the semantics of concurrency management for such beans.

See Runtime Environment

Minor editorial changes

See Compatibility and Migration

Noted that entity bean components and JAX-RPC based web services endpoints are excluded from
required support for existing applications

See Embeddable Usage

Added that EJBContainer class implements the java.lang.AutoCloseable interface

A.6. Public Draft
Reworded the rule in section See Session Bean’s Business Interface on when all business interfaces
must be explicitly designated as such

Minor editorial changes after experts review

A.7. Proposed Final Draft
Minor editorial changes

Updated rules for the activationConfig properties to reflect changes to the JMS specification. Removed
section “Durable Subscription Name in Clustered Deployment”

Moved chapter “Specification of Interceptors in the Deployment Descriptor” from the Interceptors
specification back to this document

Added that PostActivate , and PrePassivate lifecycle callback methods follow requirements for the
lifecycle callback interceptor methods defined in the Interceptors specification

Noted the a message-driven bean class may declare a constructor using Inject annotation in addition to
a no-arg constructor, if it is a CDI-enabled bean

Added AroundConstruct to the list of supported lifecycle callback methods.

A.6. Public Draft

DRAFT Jakarta Enterprise Beans, Core Features 625

Ejb.html#a5804
Ejb.html#a9423
Ejb.html#a9694
Ejb.html#a9735
Ejb.html#a1518

Added references to the Interceptors specification for bean instance creation rules if AroundConstruct
callback is declared on the associated interceptor class

Added around-construct interceptor type to the list of deployment descriptor elements used to specify
the interceptor methods of an interceptor class

Replaced newInstance() with a bean constructor to allow for Inject constructor use cases

Updated to the final versions of the related documents

Removed explicit 3.2 version where it is not needed

New: Defined EJB API Groups.

Renamed Subsection “EJB Lite” to See EJB Lite and Other EJB API Groups.

Replaced table “Required contents of EJB Lite and Full EJB API” with “EJB API Groups”

Added section See Support for Other EJB API Groups in an EJB Lite Container.

Added section See Integration with Other Technologies

Updated related Embeddable Container requirements (See Runtime Environment) to not require .war
file support

Updated XML Schema definition to the latest version

Added section on relationship to the JAX-RS Specification

New: Added Container provided security role named “**” to indicate any authenticated caller
independent of the actual role name

Adjusted section See Simple Environment Entries, and fixed the list of the naming context that the
container must implement to be consistent with the Java EE Platform specification

Added lookup-name to a deployment descriptor override rules for a Resource annotation

Replaced description of the resource-ref and the resource-env-ref elements with the references to the
Java EE Platform specification

Updated section See JMS API Requirements to reflect the latest requirements in the JMS specification

Updated sections See JTA API Requirements and See JDBC™ API Requirements to match the latest
versions of the corresponding specification

Replaced footnote in section See Disabling Passivation of Stateful Session Beans with a text note on
failover of stateful session beans and use of passivation

New: Added message-driven bean with a no-methods listener interface

A.7. Proposed Final Draft

626 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9428
Ejb.html#a9516
Ejb.html#a9527
Ejb.html#a9799
Ejb.html#a3701
Ejb.html#a9652
Ejb.html#a9644
Ejb.html#a9650
Ejb.html#a1053

Updated "What is New in This Release"

A.8. Final Release Candidate
Editorial changes

Specified that the unqualified bean class name can be used as the value in the method-name element
to bind constructor-level interceptors

Simplified requirements for definition of a security role using the ejb deployment descriptor

Restricted use of JTA transactional interceptors with EJBs

Aligned environment entries requirements with the Java EE Platform specification

Noted that if a transaction had been marked for rollback, the value of the application exception
rollback element has no effect

Updated "What is New in This Release"

Updated XML Schema definition to the latest version

Clarified that no-interface view and no-methods interface message listener methods are non-static
public methods

Removed restriction on final modifier for methods which are not exposed through a no-interface view
or are not message listener methods with a no-methods interface

A.9. Final Release
Finalized the rule on the final modifier for methods of a session bean with a no-interface view and
message-driven beans with a no-methods listener interface

[.footnoteNumber]# 1.# Earlier releases of this specification distinguished a seventh role, that of the
persistence provider. The role of the persistence provider is independent of that of the EJB
specification, which assumes that a Java Persistence implementation may be pluggable. See See Java™
Persistence API.

[.footnoteNumber]# 2.# More literally, references are passed by value in the JVM: an argument variable
of primitive type holds a value of that primitive type; an argument variable of a reference type hold a
reference to the object. See See The Java Virtual Machine Specification..

[.footnoteNumber]# 3.# This may not apply to stateless session beans; see See Stateless Session Beans.

[.footnoteNumber]# 4.# Note that the EJB 3.x session bean business interface is not an EJBObject. It is

A.8. Final Release Candidate

DRAFT Jakarta Enterprise Beans, Core Features 627

Ejb.html#a9851
Ejb.html#a9851
Ejb.html#a9876
Ejb.html#a1065

not valid to pass a reference to the remote business interface through a bean’s remote component
interface.

[.footnoteNumber]# 5.# It is part of the logic of an application designed using stateful session beans to
designate a method that causes the removal of the stateful session (and thus allows for the reclamation
of resources used by the session bean). This example assumes that the finishShopping method is such a
Remove method. See See Stateful Session Beans for further discussion.

[.footnoteNumber]# 6.# If the business interface is a remote business interface that extends
java.rmi.Remote, the java.rmi.RemoteExcep-

tion is received instead.

[.footnoteNumber]# 7.# This may not apply to stateless session beans; see See Stateless Session Beans.

[.footnoteNumber]# 8.# This may not apply to stateless session beans; see See Stateless Session Beans.

[.footnoteNumber]# 9.# Use of javax.rmi.PortableRemoteObject.narrow is not needed when the
EJBContext lookup method is used to look up the remote home interface.

[.footnoteNumber]# 10.# Note that this requirement does not apply to the EntityManager and
EntityManagerFactory objects.

[.footnoteNumber]# 11.# The container is not permitted to destroy a stateful session bean instance
because it does not meet these requirements.

[.footnoteNumber]# 12.# Note that the Java Serialization protocol dynamically determines whether or
not an object is serializable. This means that it is possible to serialize an object of a serializable
subclass of a non-serializable declared field type.

[.footnoteNumber]# 13.# Component contract and client view of entity beans are described in the EJB
Optional Features document See EJB 3.2 Optional Features.

[.footnoteNumber]# 14.# Except for the javax.mail.Session resource manager connection factory.

[.footnoteNumber]# 15.# This is to allow the container to swap out an instance’s state through
techniques other than the Java Serialization protocol. For example, the container’s Java Virtual
Machine implementation may use a block of memory to keep the instance’s variables, and the
container swaps the whole memory block to the disk instead of performing Java Serialization on the
instance.

[.footnoteNumber]# 16.# Any initialization methods defined for the bean by means of the init-method
deployment descriptor element apply in addition to those defined by means of annotations.

[.footnoteNumber]# 17.# Any remove methods defined for the bean by means of the remove-method
deployment descriptor element apply in addition to those defined by means of annotations.

[.footnoteNumber]# 18.# The concurrency management type CONTAINER may be specified for stateful

A.9. Final Release

628 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a921
Ejb.html#a1065
Ejb.html#a1065
Ejb.html#a9890

session beans, but doing so has no impact on the semantics of concurrency management for such
beans.

[.footnoteNumber]# 19.# The javax.ejb.ConcurrentAccessException is a subclass of the
javax.ejb.EJBException . If the business interface is a remote business interface that extends
java.rmi.Remote , the client will receive the java.rmi.RemoteException instead.

[.footnoteNumber]# 20.# Note that the existence of global JNDI names for the local and no-interface
client views does not imply that cross-application access to those entries is required. See See Local
Clients for more details.

[.footnoteNumber]# 21.# If an AroundConstruct lifecycle callback interceptor is associated with the
stateful session bean, the container follows the rules for the AroundConstruct interceptors defined in
the Interceptors specification See Interceptors.

[.footnoteNumber]# 22.# If a stateful session bean lifecycle callback interceptor method is invoked in
the scope of a transaction, session synchronization callbacks for such transactions are not called on the
bean instance — see section See Session Synchronization Callbacks.

[.footnoteNumber]# 23.# Note that if the Java Persistence API is used, the persistence provider will use
the beforeCompletion notification to automatically flush any updates to the container-managed
persistence context to the database. See See Java™ Persistence API.

[.footnoteNumber]# 24.# If the business interface is a remote business interface that extends
java.rmi.Remote , the java.rmi.NoSuchObjectException is thrown to the client instead.

[.footnoteNumber]# 25.# If the Remove annotation specifies the value of retainIfException as true , and
the Remove method throws an application exception, the instance is not removed (and the PreDestroy
lifecycle callback interceptor methods are not invoked).

[.footnoteNumber]# 26.# If the business interface is a remote business interface that extends
java.rmi.Remote , the java.rmi.NoSuchObjectException is thrown to the client instead.

[.footnoteNumber]# 27.# If a client calls lifecycle callback method through a business interface or a no-
interface view, the method is treated like a business method.

[.footnoteNumber]# 28.# If the business interface is a remote business interface that extends
java.rmi.Remote , the java.rmi.NoSuchObjectException is thrown to the client instead.

[.footnoteNumber]# 29.# If the business interface is a remote business interface that extends
java.rmi.Remote , the java.rmi.RemoteException is thrown to the client instead.

[.footnoteNumber]# 30.# If an AroundConstruct lifecycle callback interceptor is associated with the
stateless session bean, the container follows the rules for the AroundConstruct interceptors defined in
the Interceptors specification See Interceptors.

[.footnoteNumber]# 31.# If a client calls lifecycle callback method through a business interface or a no-
interface view, the method is treated like a business method.

A.9. Final Release

DRAFT Jakarta Enterprise Beans, Core Features 629

Ejb.html#a242
Ejb.html#a242
Ejb.html#a9887
Ejb.html#a2750
Ejb.html#a9851
Ejb.html#a9887

[.footnoteNumber]# 32.# If an AroundConstruct lifecycle callback interceptor is associated with the
singleton session bean, the container follows the rules for the AroundConstruct interceptors defined in
the Interceptors specification See Interceptors.

[.footnoteNumber]# 33.# If a client calls lifecycle callback method through a business interface or a no-
interface view, the method is treated like a business method.

[.footnoteNumber]# 34.# Note that the interfaces provided by the Bean Provider may have been
generated by tools.

[.footnoteNumber]# 35.# Note that the EJB 2.x client view is not supported for singleton session beans.

[.footnoteNumber]# 36.# Except for singleton session beans.

[.footnoteNumber]# 37.# Note that this might result from the use of default interceptors, for example.

[.footnoteNumber]# 38.# It is also an error if the Local and/or Remote annotations are specified both on
the bean class and on the referenced interface and the values differ.

[.footnoteNumber]# 39.# If PrePassivate or PostActivate lifecycle callbacks are defined for message-
driven beans, they are ignored.

[.footnoteNumber]# 40.# If an AroundConstruct lifecycle callback interceptor is associated with the
message-driven bean, the container follows the rules for the AroundConstruct interceptors defined in
the Interceptors specification See Interceptors.

[.footnoteNumber]# 41.# This might result from the use of default interceptor classes, for example.

[.footnoteNumber]# 42.# This restriction may be removed in a future release of this specification.

[.footnoteNumber]# 43.# See See Singleton Session Bean Error Handling

[.footnoteNumber]# 44.# Note that environment entries other than resources are specified with the
Resource annotation and/or resource-ref deployment descriptor element as well.

[.footnoteNumber]# 45.# In this chapter we use the TransactionAttribute annotation values to refer to
transaction attributes. The deployment descriptor may be used as an overriding mechanism or an
alternative to the use of annotations.

[.footnoteNumber]# 46.# The use of the term “container” here encompasses both the container and the
messaging provider. When the contracts outlined in See Java EE™ Connector Architecture are used, it
may be the messaging provider that starts the transaction.

[.footnoteNumber]# 47.# This restriction may be removed in a future release of this specification.

[.footnoteNumber]# 48.# However, use of the Java Persistence API EntityTransaction interface is
supported. See See Java™ Persistence API for a discussion of resources used in the Java Persistence API
that may be “unaware” of the presence of JTA transactions, and a description of the EntityTransaction

A.9. Final Release

630 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9887
Ejb.html#a9887
Ejb.html#a1254
Ejb.html#a9863
Ejb.html#a9851

interface and its use.

[.footnoteNumber]# 49.# Note that the Bean Provider must use the pre-passivate callback method here
to close the connections and set the instance variables for the connection to null.

[.footnoteNumber]# 50.# REQUIRED is the default transaction attribute value for container managed
transaction demarcation. The explicit specification of the transaction attribute is therefore not
required in this example.

[.footnoteNumber]# 51.# If a stateful session bean’s PostConstruct, PreDestroy, PrePassivate or
PostActivate lifecycle callback interceptor methods are invoked in the scope of a transaction,
SessionSynchronization callbacks for such transactions are not called on the bean instance.

[.footnoteNumber]# 52.# However, use of the Java Persistence API EntityTransaction interface is
supported. See See Java™ Persistence API for a discussion of resources used in the Java Persistence API
that may be “unaware” of the presence of JTA transactions, and a description of the EntityTransaction
interface and its use

[.footnoteNumber]# 53.# The container typically relies on a transaction manager that is part of the EJB
server to perform the two-phase commit across all the enlisted resource managers. If only a single
resource manager is involved in the transaction and the deployment descriptor indicates that
connection sharing may be used, the container may use the local transaction optimization. See See
Java™ Platform and See Java EE™ Connector Architecture for further discussion.

[.footnoteNumber]# 54.# Note that if the bean is a singleton session bean, the instance must not be
discarded unless the exception occurred in an AroundConstruct, PostConstruct or PreDestroy lifecycle
interceptor method.

[.footnoteNumber]# 55.# If the business interface is a remote business interface that extends
java.rmi.Remote , the java.rmi.RemoteException is thrown to the client instead.

[.footnoteNumber]# 56.# If the business interface is a remote business interface that extends
java.rmi.Remote , the javax.transaction.TransactionRequiredException is thrown to the client instead.

[.footnoteNumber]# 57.# If the business interface is a remote business interface that extends
java.rmi.Remote , the java.rmi.RemoteException is thrown to the client instead.

[.footnoteNumber]# 58.# T2 if the method is an asynchronous method.

[.footnoteNumber]# 59.# See See Session Bean Component Contract.

[.footnoteNumber]# 60.# See See Message-Driven Bean Component Contract.

[.footnoteNumber]# 61.# Component contract and client view of entity beans are described in the EJB
Optional Features document See EJB 3.2 Optional Features.

[.footnoteNumber]# 62.# This diamond problem applies only to the case when B and C are in the same
transaction.

A.9. Final Release

DRAFT Jakarta Enterprise Beans, Core Features 631

Ejb.html#a9851
Ejb.html#a9861
Ejb.html#a9861
Ejb.html#a9863
Ejb.html#a608
Ejb.html#a1702
Ejb.html#a9890

[.footnoteNumber]# 63.# This may not be the case where web services protocols are used. See See
Java™ API for XML-based RPC.

[.footnoteNumber]# 64.# If a transaction had been marked for rollback, the value of the rollback
element has no effect.

[.footnoteNumber]# 65.# Note that the enterprise bean business method may attempt to recover from a
RemoteException . The text in this subsection applies only to the case when the business method does
not wish to recover from the RemoteException .

[.footnoteNumber]# 66.# A checked exception is one that is not a subclass of
java.lang.RuntimeException.

[.footnoteNumber]# 67.# If the business interface is a remote business interface that extends
java.rmi.Remote , the java.rmi.RemoteException is thrown to the client instead.

[.footnoteNumber]# 68.# The caller can be another enterprise bean or an arbitrary client program.

[.footnoteNumber]# 69.# Log the exception or error means that the container logs the exception or
error so that the System Administrator is alerted of the problem.

[.footnoteNumber]# 70.# Discard instance means that the container must not invoke any business
methods or container callbacks on the instance. Discarding does not apply if the bean is a singleton
session bean.

[.footnoteNumber]# 71.# If the business interface is a remote business interface that extends
java.rmi.Remote, the javax.transaction.TransactionRolledbackException is thrown to the client, which
will receive this exception.

[.footnoteNumber]# 72.# If the business interface is a remote business interface that extends
java.rmi.Remote, the java.rmi.RemoteException is thrown to the client, which will receive this
exception.

[.footnoteNumber]# 73.# If the business interface is a remote business interface that extends
java.rmi.Remote, the java.rmi.RemoteException is thrown to the client, which will receive this
exception.

[.footnoteNumber]# 74.# Discarding does not apply if the bean is a singleton session bean.

[.footnoteNumber]# 75.# If the business interface is a remote business interface that extends
java.rmi.Remote, the java.rmi.RemoteException is thrown to the client, which will receive this
exception.

[.footnoteNumber]# 76.# The caller can be another enterprise bean or an arbitrary client program. This
case is not applicable for methods of the web service endpoint.

[.footnoteNumber]# 77.# Log the exception or error means that the container logs the exception or
error so that the System Administrator is alerted of the problem.

A.9. Final Release

632 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9873
Ejb.html#a9873

[.footnoteNumber]# 78.# Discard instance means that the container must not invoke any business
methods or container callbacks on the instance. Discarding does not apply if the bean is a singleton
session bean.

[.footnoteNumber]# 79.# Throw RemoteException to web service client means that the container maps
the RemoteException to the appropriate SOAP fault. See See Java™ API for XML-based RPC.

[.footnoteNumber]# 80.# Discarding does not apply if the bean is a singleton session bean.

[.footnoteNumber]# 81.# Throw RemoteException to web service client means that the container maps
the RemoteException to the appropriate SOAP fault. See See Java™ API for XML-based RPC.

[.footnoteNumber]# 82.# Log the exception or error means that the container logs the exception or
error so that the System Administrator is alerted of the problem.

[.footnoteNumber]# 83.# Discard instance means that the container must not invoke any methods on
the instance.

[.footnoteNumber]# 84.# Log the exception or error means that the container logs the exception or
error so that the System Administrator is alerted of the problem.

[.footnoteNumber]# 85.# Discard instance means that the container must not invoke any methods on
the instance. Discarding does not apply if the bean is a singleton session bean.

[.footnoteNumber]# 86.# Log the exception or error means that the container logs the exception or
error so that the System Administrator is alerted of the problem.

[.footnoteNumber]# 87.# Discard instance means that the container must not invoke any methods on
the instance. Discarding does not apply if the bean is a singleton session bean.

[.footnoteNumber]# 88.# If the business interface is a remote business interface that extends
java.rmi.Remote , the java.rmi.RemoteException is thrown to the client instead.

[.footnoteNumber]# 89.# If the business interface is a remote business interface that extends
java.rmi.Remote , the javax.transaction.TransactionRolledbackException is thrown to the client instead.

[.footnoteNumber]# 90.# If the business interface is a remote business interface that extends
java.rmi.Remote , the java.rmi.NoSuchObjectException is thrown to the client instead.

[.footnoteNumber]# 91.# If the business interface is a remote business interface that extends
java.rmi.Remote , the java.rmi.RemoteException is thrown to the client instead.

[.footnoteNumber]# 92.# If a transaction had been marked for rollback, the setting on the application
exception has no effect.

[.footnoteNumber]# 93.# Component contract and client view of entity beans are described in the EJB
Optional Features document See EJB 3.2 Optional Features.

A.9. Final Release

DRAFT Jakarta Enterprise Beans, Core Features 633

Ejb.html#a9873
Ejb.html#a9873
Ejb.html#a9890

[.footnoteNumber]# 94.# CORBA APIs and earlier versions of the IIOP protocol are already included in
the J2SE 1.2, J2SE 1.3 and J2EE 1.2 platforms through JavaIDL and RMI-IIOP.

[.footnoteNumber]# 95.# Component contract and client view of entity beans are described in the EJB
Optional Features document See EJB 3.2 Optional.

[.footnoteNumber]# 96.# Component contract and client view of entity beans are described in the EJB
Optional Features document See EJB 3.2 Optional.

[.footnoteNumber]# 97.# One way to include the tagged components in IORs is to create the object
references using a Portable Object Adapter (POA) which is initialized with the appropriate transaction
policies. Note that POA APIs are not required to be supported by server containers.

[.footnoteNumber]# 98.# If the InvocationPolicy is not present in the IOR, it is interpreted by the client
as if the policy value was CosTransactions::EITHER .

[.footnoteNumber]# 99.# When there are concurrent invocations on a component from multiple
clients, a different principal may be associated with the thread of execution for each invocation.

[.footnoteNumber]# 100.# One way to achieve this is to configure a “trusted container list” for each EJB
container which contains the list of intermediate client containers that are trusted. If the list is empty,
then the target EJB container does not have a trust relationship with any intermediate container.

[.footnoteNumber]# 101.# This ciphersuite is mandatory for compliant TLS implementations as
specified in See RFC 2246: The TLS Protocol..

[.footnoteNumber]# 102.# The term “resource” is used generically in this chapter to refer to these other
environment entries as resources as well. Resources in the non-generic sense are described in section
See Resource Manager Connection Factory References.

[.footnoteNumber]# 103.# Component contract and client view of entity beans are described in the EJB
Optional Features document See EJB 3.2 Optional.

[.footnoteNumber]# 104.# Component contract and client view of entity beans are described in the EJB
Optional Features document See EJB 3.2 Optional.

[.footnoteNumber]# 105.# The Bean Provider may also use this syntax in the beanName element of the
EJB annotation.

[.footnoteNumber]# 106.# Connections obtained from the same resource manager connection factory
through a different resource manager connection factory reference may be shareable.

[.footnoteNumber]# 107.# If the Bean Provider and Application Assembler do not define security roles,
the Deployer will have to define security roles at deployment time.

[.footnoteNumber]# 108.# Component contract and client view of entity beans are described in the EJB
Optional Features document See EJB 3.2 Optional.

A.9. Final Release

634 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a9890
Ejb.html#a9890
Ejb.html#a9868
Ejb.html#a4159
Ejb.html#a9890
Ejb.html#a9890
Ejb.html#a9890

[.footnoteNumber]# 109.# Component contract and client view of entity beans are described in the EJB
Optional Features document See EJB 3.2 Optional.

[.footnoteNumber]# 110.# If the business interface is a remote business interface that extends
java.rmi.Remote , the java.rmi.AccessException is thrown to the client instead.

[.footnoteNumber]# 111.# For example, the enterprise bean may be installed each time using a
different bean name (as specified by means of the deployment descriptor).

[.footnoteNumber]# 112.# The calendar-based timer and non-persistent timer functionality is not
supported for 2.1 Entity beans.

[.footnoteNumber]# 113.# This functionality may be added in a future release of this specification.

[.footnoteNumber]# 114.# In the event of race conditions, extraneous calls to the timeout callback
method may occur.

[.footnoteNumber]# 115.# Note that annotation java.lang.String attributes use the empty string ““ as a
default, so the expression @Schedule(timezone=””, …) will result in a null value from the
corresponding ScheduleExpression.getTimezone() method.

[.footnoteNumber]# 116.# Note that the default value of the info element of the Schedule annotation is
the empty string "" . The expression @Schedule(info= "" , …) will also result in a null value from the
timer’s getInfo() method.

[.footnoteNumber]# 117.# There is currently no way to set the information object after timer creation.
An API to do this may be added in a future release of this specification.

[.footnoteNumber]# 118.# This method may be specified on the bean class or on a superclass. If the
Timeout annotation is used or the bean implements the TimedObject interface, the timeout-method
deployment descriptor element, if specified, can only be used to refer to the same method.

[.footnoteNumber]# 119.# If the bean implements the TimedObject interface, the Timeout annotation
may optionally be applied to the ejbTimeout method.

[.footnoteNumber]# 120.# An earlier version of the specification required that timeout callbacks accept
the Timer parameter but did not require that this parameter be listed when declared by means of the
deployment descriptor. To preserve backward compatibility, a timeout-method that does not include a
method-param element for the javax.ejb.Timer parameter may be used to match either a timeout
method signature with or without a Timer parameter, if there is only one method with the specified
name. If methods with the specified name are overloaded, a timeout-method element with an empty
method-params element will be used to explicitly refer to a the no-arg timeout method.

[.footnoteNumber]# 121.# The concurrency-management-type Container may be specified for stateful
session beans, but doing so has no impact on the semantics of concurrency management for such
beans.

[.footnoteNumber]# 122.# This permission is necessary, for example, to allow enterprise beans to use

A.9. Final Release

DRAFT Jakarta Enterprise Beans, Core Features 635

Ejb.html#a9890

the client functionality of the Java IDL and RMI-IIOP packages that are part of the Java 2 platform.

[.footnoteNumber]# 123.# This restriction may be removed in a future release of this specification.

[.footnoteNumber]# 124.# See See Pruning the EJB API

[.footnoteNumber]# 125.# In general, the same database data should not be accessed by both Java
Persistence entities and EJB 2.x entities within the same application: behavior is unspecified if data
aliasing occurs.

[.footnoteNumber]# 126.# Support for more than one module is required for a Full Java EE platform
product. Multi-module support is only required for Java EE profiles that require support for .ear files.

A.9. Final Release

636 Jakarta Enterprise Beans, Core Features DRAFT

Ejb.html#a182

	Jakarta Enterprise Beans, Core Features
	Table of Contents
	Copyright
	Eclipse Foundation Specification License
	Disclaimers

	Chapter 1. Introduction
	1.1. Target Audience
	1.2. What is New in This Release
	1.3. What was New in EJB 3.1
	1.3.1. What was New in EJB 3.0

	1.4. Acknowledgements
	1.5. Organization of the Specification Documents
	1.6. Document Conventions

	Chapter 2. Overview
	2.1. Overall Goals
	2.2. EJB Roles
	2.2.1. Enterprise Bean Provider
	2.2.2. Application Assembler
	2.2.3. Deployer
	2.2.4. EJB Server Provider
	2.2.5. EJB Container Provider
	2.2.6. System Administrator

	2.3. Enterprise Beans
	2.3.1. Characteristics of Enterprise Beans
	2.3.2. Flexible Model

	2.4. Enterprise Bean Object Types
	2.4.1. Session Objects
	2.4.2. Message-Driven Objects
	2.4.3. Entity Objects (Optional)

	2.5. Standard Mapping to CORBA Protocols
	2.6. Mapping to Web Service Protocols
	2.7. Pruning the EJB API
	2.8. Relationship to Managed Bean Specification
	2.9. Relationship to Contexts and Dependency Injection (CDI) Specification
	2.10. Relationship to the Java API for RESTful Web Services (JAX-RS) Specification

	Chapter 3. Client View of a Session Bean
	3.1. Overview
	3.2. Local, Remote, and Web Service Client Views
	3.2.1. Remote Clients
	3.2.2. Local Clients
	3.2.3. Choosing Between a Local or Remote Client View
	3.2.4. Web Service Clients

	3.3. EJB Container
	3.4. Client View of Session Beans Written to the EJB 3.x Simplified API
	3.4.1. Obtaining a Session Bean’s Business Interface
	3.4.2. Obtaining a Reference to the No-interface View
	3.4.3. Session Bean’s Business Interface
	3.4.4. Session Bean’s No-Interface View
	3.4.5. Client View of Session Object’s Life Cycle
	3.4.6. Example of Obtaining and Using a Session Object
	3.4.7. Session Object Identity
	3.4.7.1. Stateful Session Beans
	3.4.7.2. Stateless Session Beans
	3.4.7.3. Singleton Session Beans

	3.4.8. Asynchronous Invocations
	3.4.8.1. Return Values

	3.4.9. Concurrent Access to Session Bean References

	3.5. The Web Service Client View of a Stateless or Singleton Session Bean
	3.5.1. JAX-WS Web Service Clients

	3.6. Remote and Local Client View of Session Beans Written to the EJB 2.1 Client View API
	3.6.1. Locating a Session Bean’s Home Interface
	3.6.2. Session Bean’s Remote Home Interface
	3.6.2.1. Creating a Session Object
	3.6.2.2. Removing a Session Object

	3.6.3. Session Bean’s Local Home Interface
	3.6.3.1. Creating a Session Object
	3.6.3.2. Removing a Session Object

	3.6.4. EJBObject and EJBLocalObject
	3.6.5. Client view of Session Object’s Life Cycle
	3.6.5.1. References to Session Object Remote Component Interfaces
	3.6.5.2. References to Session Object Local Component Interfaces

	3.6.6. Creating and Using a Session Object
	3.6.7. Object Identity
	3.6.7.1. Stateful Session Beans
	3.6.7.2. Stateless Session Beans
	3.6.7.3. getPrimaryKey()

	3.6.8. Type Narrowing

	Chapter 4. Session Bean Component Contract
	4.1. Overview
	4.2. Conversational State of a Stateful Session Bean
	4.2.1. Instance Passivation and Conversational State
	4.2.2. The Effect of Transaction Rollback on Conversational State

	4.3. Protocol Between a Session Bean Instance and its Container
	4.3.1. Required Session Bean Metadata
	4.3.2. Dependency Injection
	4.3.3. The SessionContext Interface
	4.3.3.1. Use of the MessageContext Interface by Session Beans

	4.3.4. Session Bean Lifecycle Callback Interceptor Methods
	4.3.5. The SessionBean Interface
	4.3.6. The Session Synchronization Notifications for Stateful Session Beans
	4.3.7. Timeout Callbacks for Stateless and Singleton Session Beans
	4.3.8. Business Method Delegation
	4.3.9. Session Bean Creation
	4.3.9.1. Stateful Session Beans
	4.3.9.2. Stateless Session Beans

	4.3.10. Stateful Session Bean Removal
	4.3.11. Stateful Session Bean Timeout
	4.3.12. Business Method Interceptor Methods for Session Beans
	4.3.13. Serializing Session Bean Methods
	4.3.13.1. Stateful Session Bean Concurrent Access Timeouts

	4.3.14. Transaction Context of Session Bean Methods

	4.4. Access in the Global JNDI Namespace
	4.4.1. Syntax
	4.4.1.1. java:app
	4.4.1.2. java:module

	4.4.2. Examples
	4.4.2.1. Session bean exposing a single local business interface
	4.4.2.2. Session bean exposing multiple client views

	4.5. Asynchronous Methods
	4.5.1. Metadata
	4.5.2. Method Requirements
	4.5.2.1. Return Values
	4.5.2.2. Method cancellation

	4.5.3. Transactions
	4.5.4. Security
	4.5.5. Client Exception Behavior

	4.6. Stateful Session Beans
	4.6.1. Stateful Session Bean Lifecycle State Diagram
	4.6.2. Operations Allowed in the Methods of a Stateful Session Bean Class
	4.6.3. Dealing with Exceptions
	4.6.4. Missed PreDestroy Calls
	4.6.5. Disabling Passivation of Stateful Session Beans
	4.6.6. Transaction Semantics of Initialization, Destruction, Activation and Passivation
	4.6.7. Restrictions for Transactions

	4.7. Stateless Session Beans
	4.7.1. Stateless Session Bean Lifecycle State Diagram
	4.7.2. Operations Allowed in the Methods of a Stateless Session Bean Class
	4.7.3. Dealing with Exceptions

	4.8. Singleton Session Beans
	4.8.1. Singleton Session Bean Initialization
	4.8.2. Singleton Session Bean Destruction
	4.8.3. Transaction Semantics of Initialization and Destruction
	4.8.4. Singleton Session Bean Error Handling
	4.8.5. Singleton Session Bean Concurrency
	4.8.5.1. Container-Managed Concurrency
	4.8.5.2. Bean-Managed Concurrency
	4.8.5.3. Specification of a Concurrency Management Type
	4.8.5.4. Specification of the Container-Managed Concurrency Metadata for a Bean’s Methods
	4.8.5.5. Concurrent Access Timeouts

	4.8.6. Operations Allowed in the Methods of a Singleton Session Bean

	4.9. The Responsibilities of the Bean Provider
	4.9.1. Classes and Interfaces
	4.9.2. Session Bean Class
	4.9.2.1. Session Bean Superclasses

	4.9.3. Lifecycle Callback Interceptor Methods
	4.9.4. Session Synchronization Methods
	4.9.5. ejbCreate<METHOD> Methods
	4.9.6. Business Methods
	4.9.7. Session Bean’s Business Interface
	4.9.8. Session Bean’s No-Interface View
	4.9.9. Session Bean’s Remote Component Interface
	4.9.10. Session Bean’s Remote Home Interface
	4.9.11. Session Bean’s Local Component Interface
	4.9.12. Session Bean’s Local Home Interface
	4.9.13. Session Bean’s Web Service Endpoint Interface

	4.10. The Responsibilities of the Container Provider
	4.10.1. Generation of Implementation Classes
	4.10.2. Generation of WSDL
	4.10.3. Session Business Interface Implementation Class
	4.10.4. No-Interface View Reference Class
	4.10.5. Session EJBHome Class
	4.10.6. Session EJBObject Class
	4.10.7. Session EJBLocalHome Class
	4.10.8. Session EJBLocalObject Class
	4.10.9. Web Service Endpoint Implementation Class
	4.10.10. Asynchronous Client Future<V> Return Value Implementation Class
	4.10.11. Handle Classes
	4.10.12. EJBMetaData Class
	4.10.13. Non-reentrant Instances
	4.10.14. Transaction Scoping, Security, Exceptions
	4.10.15. JAX-WS Message Handlers for Web Service Endpoints
	4.10.16. SessionContext

	Chapter 5. Message-Driven Bean Component Contract
	5.1. Overview
	5.2. Goals
	5.3. Client View of a Message-Driven Bean
	5.4. Protocol Between a Message-Driven Bean Instance and its Container
	5.4.1. Required MessageDrivenBean Metadata
	5.4.2. The Required Message Listener Interface
	5.4.3. Message-Driven Bean with No-Methods Listener Interface
	5.4.4. Dependency Injection
	5.4.5. The MessageDrivenContext Interface
	5.4.6. Message-Driven Bean Lifecycle Callback Interceptor Methods
	5.4.7. The Optional MessageDrivenBean Interface
	5.4.8. Timeout Callbacks
	5.4.9. Message-Driven Bean Creation
	5.4.10. Message Listener Interceptor Methods for Message-Driven Beans
	5.4.11. Serializing Message-Driven Bean Methods
	5.4.12. Concurrency of Message Processing
	5.4.13. Transaction Context of Message-Driven Bean Methods
	5.4.14. Security Context of Message-Driven Bean Methods
	5.4.15. Association of a Message-Driven Bean with a Destination or Endpoint
	5.4.16. Activation Configuration Properties
	5.4.17. JMS Message-Driven Beans
	5.4.17.1. Message Acknowledgment
	5.4.17.2. Message Selectors
	5.4.17.3. Destination Type
	5.4.17.4. Destination Lookup
	5.4.17.5. Connection Factory Lookup
	5.4.17.6. Subscription Durability
	5.4.17.7. Subscription Name
	5.4.17.8. Client Identifier

	5.4.18. Dealing with Exceptions
	5.4.19. Missed PreDestroy Callbacks
	5.4.20. Replying to a JMS Message

	5.5. Message-Driven Bean State Diagram
	5.5.1. Operations Allowed in the Methods of a Message-Driven Bean Class

	5.6. The Responsibilities of the Bean Provider
	5.6.1. Classes and Interfaces
	5.6.2. Message-Driven Bean Class
	5.6.3. Message-Driven Bean Superclasses
	5.6.4. Message Listener Method
	5.6.5. Message-Driven Bean with No-Methods Listener Interface
	5.6.6. Lifecycle Callback Interceptor Methods

	5.7. The Responsibilities of the Container Provider
	5.7.1. Generation of Implementation Classes
	5.7.2. Deployment of Message-Driven Beans with No-Methods Listener Interface
	5.7.3. Deployment of JMS Message-Driven Beans
	5.7.4. Request/Response Messaging Types
	5.7.5. Non-reentrant Instances
	5.7.6. Transaction Scoping, Security, Exceptions

	Chapter 6. Persistence
	Chapter 7. Interceptors
	7.1. Overview
	7.2. Interceptor Life Cycle
	7.3. Business Method Interceptors
	7.4. Timer Timeout Method Interceptors
	7.5. Interceptors for LifeCycle Event Callbacks
	7.6. InvocationContext
	7.7. Exception Handling
	7.8. Specification of Interceptors in the Deployment Descriptor
	7.8.1. Specification of Interceptors
	7.8.2. Binding of Interceptors to Target Classes
	7.8.2.1. Examples

	Chapter 8. Support for Transactions
	8.1. Overview
	8.1.1. Transactions
	8.1.2. Transaction Model
	8.1.3. Relationship to JTA and JTS

	8.2. Sample Scenarios
	8.2.1. Update of Multiple Databases
	8.2.2. Messages Sent or Received Over JMS Sessions and Update of Multiple Databases
	8.2.3. Update of Databases via Multiple EJB Servers
	8.2.4. Client-Managed Demarcation
	8.2.5. Container-Managed Demarcation

	8.3. Bean Provider’s Responsibilities
	8.3.1. Bean-Managed Versus Container-Managed Transaction Demarcation
	8.3.1.1. Non-Transactional Execution

	8.3.2. Isolation Levels
	8.3.3. Enterprise Beans Using Bean-Managed Transaction Demarcation
	8.3.3.1. getRollbackOnly and setRollbackOnly Methods

	8.3.4. Enterprise Beans Using Container-Managed Transaction Demarcation
	8.3.4.1. javax.ejb.SessionSynchronization Interface
	8.3.4.2. javax.ejb.EJBContext.setRollbackOnly Method
	8.3.4.3. javax.ejb.EJBContext.getRollbackOnly method

	8.3.5. Use of JMS APIs in Transactions
	8.3.6. Specification of a Bean’s Transaction Management Type
	8.3.7. Specification of the Transaction Attributes for a Bean’s Methods
	8.3.7.1. Specification of Transaction Attributes with Metadata Annotations
	8.3.7.2. Specification of Transaction Attributes in the Deployment Descriptor

	8.4. Application Assembler’s Responsibilities
	8.5. Deployer’s Responsibilities
	8.6. Container Provider Responsibilities
	8.6.1. Bean-Managed Transaction Demarcation
	8.6.2. Container-Managed Transaction Demarcation for Session Beans
	8.6.2.1. Session Synchronization Callbacks

	8.6.3. Container-Managed Transaction Demarcation for Business Methods
	8.6.3.1. NOT_SUPPORTED
	8.6.3.2. REQUIRED
	8.6.3.3. SUPPORTS
	8.6.3.4. REQUIRES_NEW
	8.6.3.5. MANDATORY
	8.6.3.6. NEVER
	8.6.3.7. Transaction Attribute Summary
	8.6.3.8. Handling of setRollbackOnly Method
	8.6.3.9. Handling of getRollbackOnly Method
	8.6.3.10. Handling of getUserTransaction Method
	8.6.3.11. Timing of Return Value Marshalling with Regard to Transaction Boundaries

	8.6.4. Container-Managed Transaction Demarcation for Message-Driven Beans
	8.6.5. Container-Managed Transaction Demarcation for Message Listener Methods
	8.6.5.1. NOT_SUPPORTED
	8.6.5.2. REQUIRED
	8.6.5.3. Handling of setRollbackOnly Method
	8.6.5.4. Handling of getRollbackOnly Method
	8.6.5.5. Handling of getUserTransaction Method

	8.6.6. Local Transaction Optimization
	8.6.7. Handling of Methods that Run with “an unspecified transaction context”

	8.7. Access from Multiple Clients in the Same Transaction Context
	8.7.1. Transaction “Diamond” Scenario with an Entity Object
	8.7.2. Container Provider’s Responsibilities
	8.7.3. Bean Provider’s Responsibilities
	8.7.4. Application Assembler and Deployer’s Responsibilities
	8.7.5. Transaction Diamonds involving Session Objects

	Chapter 9. Exception Handling
	9.1. Overview and Concepts
	9.1.1. Application Exceptions
	9.1.2. Goals for Exception Handling

	9.2. Bean Provider’s Responsibilities
	9.2.1. Application Exceptions
	9.2.2. System Exceptions

	9.3. Container Provider Responsibilities
	9.3.1. Exceptions from a Session Bean’s Business Interface Methods and No-Interface View Methods
	9.3.2. Exceptions from Method Invoked via Session Bean’s 2.1 Client View or through Web Service Client View
	9.3.3. Exceptions from AroundConstruct, PostConstruct and PreDestroy Lifecycle Callbacks
	9.3.4. Exceptions from Message-Driven Bean Message Listener Methods
	9.3.5. Exceptions from an Enterprise Bean’s Timeout Callback Method
	9.3.6. Exceptions from Other Container-invoked Callbacks
	9.3.7. Non-existing Stateful Session Object
	9.3.8. Exceptions from the Management of Container-Managed Transactions
	9.3.9. Release of Resources
	9.3.10. Support for Deprecated Use of java.rmi.RemoteException

	9.4. Client’s View of Exceptions
	9.4.1. Application Exception
	9.4.1.1. Local and Remote Clients
	9.4.1.2. Web Service Clients

	9.4.2. java.rmi.RemoteException and javax.ejb.EJBException
	9.4.2.1. javax.ejb.EJBTransactionRolledbackException, javax.ejb.TransactionRolledbackLocalException, and javax.transaction.TransactionRolledbackException
	9.4.2.2. javax.ejb.EJBTransactionRequiredException, javax.ejb.TransactionRequiredLocalException, and javax.transaction.TransactionRequiredException
	9.4.2.3. javax.ejb.NoSuchEJBException, javax.ejb.NoSuchObjectLocalException, and java.rmi.NoSuchObjectException

	9.5. System Administrator’s Responsibilities

	Chapter 10. Support for Distributed Interoperability
	10.1. Support for Distribution
	10.1.1. Client-Side Objects in a Distributed Environment

	10.2. Interoperability Overview
	10.2.1. Interoperability Goals

	10.3. Interoperability Scenarios
	10.3.1. Interactions Between Web Containers and EJB Containers for E-Commerce Applications
	10.3.2. Interactions Between Application Client Containers and EJB Containers Within an Enterprise’s Intranet
	10.3.3. Interactions Between Two EJB Containers in an Enterprise’s Intranet
	10.3.4. Intranet Application Interactions Between Web Containers and EJB Containers

	10.4. Overview of Interoperability Requirements
	10.5. Remote Invocation Interoperability
	10.5.1. Mapping Java Remote Interfaces to IDL
	10.5.2. Mapping Value Objects to IDL
	10.5.3. Mapping of System Exceptions
	10.5.4. Obtaining Stub and Client View Classes
	10.5.5. System Value Classes
	10.5.5.1. HandleDelegate SPI

	10.6. Transaction Interoperability
	10.6.1. Transaction Interoperability Requirements
	10.6.1.1. Transaction Context Wire Format
	10.6.1.2. Two-Phase Commit Protocol
	10.6.1.3. Transactional Policies of Enterprise Bean References
	10.6.1.4. Exception Handling Behavior

	10.6.2. Interoperating with Containers that do not Implement Transaction Interoperability
	10.6.2.1. Client Container Requirements
	10.6.2.2. EJB container requirements

	10.7. Requirements for EJB Containers not Supporting Transaction Interoperability
	10.8. Naming Interoperability
	10.9. Security Interoperability
	10.9.1. Introduction
	10.9.1.1. Trust Relationships Between Containers, Principal Propagation
	10.9.1.2. Application Client Authentication

	10.9.2. Securing EJB Invocations
	10.9.2.1. Secure Transport Protocol
	10.9.2.2. Security Information in IORs
	10.9.2.3. Propagating Principals and Authentication Data in IIOP Messages
	10.9.2.4. Security Configuration for Containers
	10.9.2.5. Runtime Behavior

	Chapter 11. Enterprise Bean Environment
	11.1. Overview
	11.2. Enterprise Bean’s Environment as a JNDI Naming Context
	11.2.1. Sharing of Environment Entries
	11.2.2. Annotations for Environment Entries
	11.2.3. Annotations and Deployment Descriptors

	11.3. Responsibilities by EJB Role
	11.3.1. Bean Provider’s Responsibilities
	11.3.2. Application Assembler’s Responsibility
	11.3.3. Deployer’s Responsibility
	11.3.4. Container Provider Responsibility

	11.4. Simple Environment Entries
	11.4.1. Bean Provider’s Responsibilities
	11.4.1.1. Injection of Simple Environment Entries Using Annotations
	11.4.1.2. Programming Interfaces for Accessing Simple Environment Entries
	11.4.1.3. Declaration of Simple Environment Entries in the Deployment Descriptor

	11.4.2. Application Assembler’s Responsibility
	11.4.3. Deployer’s Responsibility
	11.4.4. Container Provider Responsibility

	11.5. EJB References
	11.5.1. Bean Provider’s Responsibilities
	11.5.1.1. Injection of EJB References
	11.5.1.2. EJB Reference Programming Interfaces
	11.5.1.3. Declaration of EJB References in Deployment Descriptor

	11.5.2. Application Assembler’s Responsibilities
	11.5.2.1. Overriding Rules

	11.5.3. Deployer’s Responsibility
	11.5.4. Container Provider’s Responsibility

	11.6. Web Service References
	11.7. Resource Manager Connection Factory References
	11.7.1. Bean Provider’s Responsibilities
	11.7.1.1. Injection of Resource Manager Connection Factory References
	11.7.1.2. Programming Interfaces for Resource Manager Connection Factory References
	11.7.1.3. Declaration of Resource Manager Connection Factory References in Deployment Descriptor
	11.7.1.4. Standard Resource Manager Connection Factory Types

	11.7.2. Deployer’s Responsibility
	11.7.3. Container Provider Responsibility
	11.7.4. System Administrator’s Responsibility

	11.8. Resource Environment References
	11.8.1. Bean Provider’s Responsibilities
	11.8.1.1. Injection of Resource Environment References
	11.8.1.2. Resource Environment Reference Programming Interfaces
	11.8.1.3. Declaration of Resource Environment References in Deployment Descriptor

	11.8.2. Deployer’s Responsibility
	11.8.3. Container Provider’s Responsibility

	11.9. Message Destination References
	11.9.1. Bean Provider’s Responsibilities
	11.9.1.1. Injection of Message Destination References
	11.9.1.2. Message Destination Reference Programming Interfaces
	11.9.1.3. Declaration of Message Destination References in Deployment Descriptor

	11.9.2. Application Assembler’s Responsibilities
	11.9.3. Deployer’s Responsibility
	11.9.4. Container Provider’s Responsibility

	11.10. Persistence Unit References
	11.10.1. Bean Provider’s Responsibilities
	11.10.1.1. Injection of Persistence Unit References
	11.10.1.2. Programming Interfaces for Persistence Unit References
	11.10.1.3. Declaration of Persistence Unit References in Deployment Descriptor

	11.10.2. Application Assembler’s Responsibilities
	11.10.2.1. Overriding Rules

	11.10.3. Deployer’s Responsibility
	11.10.4. Container Provider Responsibility
	11.10.5. System Administrator’s Responsibility

	11.11. Persistence Context References
	11.11.1. Bean Provider’s Responsibilities
	11.11.1.1. Injection of Persistence Context References
	11.11.1.2. Programming Interfaces for Persistence Context References
	11.11.1.3. Declaration of Persistence Context References in Deployment Descriptor

	11.11.2. Application Assembler’s Responsibilities
	11.11.2.1. Overriding Rules

	11.11.3. Deployer’s Responsibility
	11.11.4. Container Provider Responsibility
	11.11.5. System Administrator’s Responsibility

	11.12. UserTransaction Interface
	11.12.1. Bean Provider’s Responsibility
	11.12.2. Container Provider’s Responsibility

	11.13. ORB References
	11.13.1. Bean Provider’s Responsibility
	11.13.2. Container Provider’s Responsibility

	11.14. TimerService References
	11.14.1. Bean Provider’s Responsibility
	11.14.2. Container Provider’s Responsibility

	11.15. EJBContext References
	11.15.1. Bean Provider’s Responsibility
	11.15.2. Container Provider’s Responsibility

	11.16. Support for Other Resources and Configuration Parameters
	11.17. Deprecated EJBContext.getEnvironment Method

	Chapter 12. Security Management
	12.1. Overview
	12.2. Bean Provider’s Responsibilities
	12.2.1. Invocation of Other Enterprise Beans
	12.2.2. Resource Access
	12.2.3. Access of Underlying OS Resources
	12.2.4. Programming Style Recommendations
	12.2.5. Programmatic Access to Caller’s Security Context
	12.2.5.1. Use of getCallerPrincipal
	12.2.5.2. Use of isCallerInRole
	12.2.5.3. Declaration of Security Roles Referenced from the Bean’s Code

	12.3. Responsibilities of the Bean Provider and/or Application Assembler
	12.3.1. Security Roles
	12.3.2. Method Permissions
	12.3.2.1. Specification of Method Permissions with Metadata Annotations
	12.3.2.2. Specification of Method Permissions in the Deployment Descriptor
	12.3.2.3. Unspecified Method Permissions

	12.3.3. Linking Security Role References to Security Roles
	12.3.4. Specification of Security Identities in the Deployment Descriptor
	12.3.4.1. Run-as

	12.4. Deployer’s Responsibilities
	12.4.1. Security Domain and Principal Realm Assignment
	12.4.2. Assignment of Security Roles
	12.4.3. Principal Delegation
	12.4.4. Security Management of Resource Access
	12.4.5. General Notes on Deployment Descriptor Processing

	12.5. EJB Client Responsibilities
	12.6. EJB Container Provider’s Responsibilities
	12.6.1. Deployment Tools
	12.6.2. Security Domain(s)
	12.6.3. Security Mechanisms
	12.6.4. Passing Principals on EJB Calls
	12.6.5. Security Methods in javax.ejb.EJBContext
	12.6.6. Secure Access to Resource Managers
	12.6.7. Principal Mapping
	12.6.8. System Principal
	12.6.9. Runtime Security Enforcement
	12.6.10. Audit Trail

	12.7. System Administrator’s Responsibilities
	12.7.1. Security Domain Administration
	12.7.2. Principal Mapping
	12.7.3. Audit Trail Review

	Chapter 13. Timer Service
	13.1. Overview
	13.2. Bean Provider’s View of the Timer Service
	13.2.1. Calendar-Based Time Expressions
	13.2.1.1. Calendar-Based Time Expression Attributes
	13.2.1.2. Attribute Syntax
	13.2.1.3. Expression Rules
	13.2.1.4. Examples

	13.2.2. Automatic Timer Creation
	13.2.3. Non-persistent Timers
	13.2.4. The TimerService Interface
	13.2.4.1. Example

	13.2.5. Timeout Callback Methods
	13.2.5.1. Timeout Callbacks for Programmatic Timers
	13.2.5.2. Timeout Callbacks for Automatically Created Timers
	13.2.5.3. Timeout Callback Method Requirements

	13.2.6. The Timer and TimerHandle Interfaces
	13.2.7. Timer Identity
	13.2.8. Transactions

	13.3. Bean Provider’s Responsibilities
	13.3.1. Enterprise Bean Class
	13.3.2. TimerHandle

	13.4. Container’s Responsibilities
	13.4.1. TimerService, Timer, and TimerHandle Interfaces
	13.4.2. Automatic Timers
	13.4.3. Timer Expiration and Timeout Callback Method
	13.4.4. Timer Cancellation

	Chapter 14. Deployment Descriptor
	14.1. Overview
	14.2. Bean Provider’s Responsibilities
	14.3. Application Assembler’s Responsibility
	14.4. Container Provider’s Responsibilities
	14.5. Deployment Descriptor XML Schema

	Chapter 15. Packaging
	15.1. Overview
	15.2. Deployment Descriptor
	15.3. Packaging Requirements
	15.4. Enterprise Beans Packaged in a .war file
	15.4.1. Class Loading
	15.4.2. Component Environment
	15.4.3. Visibility of the Local Client View
	15.4.4. Ejb-names
	15.4.5. Example

	15.5. Deployment Descriptor and Annotation Processing
	15.5.1. Ejb-jar Deployment Descriptor and Annotation Processing
	15.5.2. .war Deployment Descriptor and Annotation Processing

	15.6. The Client View and the ejb-client JAR File
	15.7. Requirements for Clients
	15.8. Example

	Chapter 16. Runtime Environment
	16.1. EJB Lite and Other EJB API Groups
	16.1.1. Support for Other EJB API Groups in an EJB Lite Container
	16.1.2. Integration with Other Technologies

	16.2. Bean Provider’s Responsibilities
	16.2.1. APIs Provided by Container
	16.2.2. Programming Restrictions

	16.3. Container Provider’s Responsibility
	16.3.1. EJB Interfaces and Annotations Requirements
	16.3.2. JNDI Requirements
	16.3.3. JTA API Requirements
	16.3.4. JDBC™ API Requirements
	16.3.5. JMS API Requirements
	16.3.6. Argument Passing Semantics
	16.3.7. Other Requirements

	Chapter 17. Compatibility and Migration
	17.1. Support for Existing Applications
	17.2. Default Stateful Session Bean Concurrency Behavior
	17.3. Default Application Exception Subclassing Behavior
	17.4. Interoperability of EJB 3.2 and Earlier Components
	17.4.1. Clients written to the EJB 2.x APIs
	17.4.2. Clients written to the EJB 3.x API
	17.4.3. Combined use of EJB 2.x and EJB 3.x persistence APIs

	17.5. Adapting EJB 3.x Session Beans to Earlier Client Views
	17.5.1. Stateless Session Beans
	17.5.2. Stateful Session Beans

	Chapter 18. Embeddable Usage
	18.1. Overview
	18.2. Bootstrapping API
	18.2.1. EJBContainer
	18.2.2. Standard Initialization Properties
	18.2.2.1. javax.ejb.embeddable.provider
	18.2.2.2. javax.ejb.embeddable.modules
	18.2.2.3. javax.ejb.embeddable.appName

	18.2.3. Looking Up Session Bean References
	18.2.4. Embeddable Container Shutdown

	18.3. Embeddable Container Provider’s Responsibilities
	18.3.1. Runtime Environment
	18.3.2. Naming Lookups
	18.3.3. Embeddable Container Bootstrapping
	18.3.4. Concrete javax.ejb.embeddable.EJBContainer Implementation Class

	Chapter 19. Responsibilities of EJB Roles
	19.1. Bean Provider’s Responsibilities
	19.1.1. API Requirements
	19.1.2. Packaging Requirements

	19.2. Application Assembler’s Responsibilities
	19.3. EJB Container Provider’s Responsibilities
	19.4. Deployer’s Responsibilities
	19.5. System Administrator’s Responsibilities
	19.6. Client Programmer’s Responsibilities

	Chapter 20. Related Documents
	Appendix A: Revision History
	A.1. Early Draft 1
	A.2. Early Draft 2
	A.3. Public Review Draft 1 & 2
	A.4. Public Review Draft 3
	A.5. Public Review Draft 4
	A.6. Public Draft
	A.7. Proposed Final Draft
	A.8. Final Release Candidate
	A.9. Final Release

